期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Bridge damage identification based on convolutional autoencoders and extreme gradient boosting trees
1
作者 Duan Yuanfeng Duan Zhengteng +1 位作者 Zhang Hongmei Cheng J.J.Roger 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期221-229,共9页
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele... To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios. 展开更多
关键词 structural health monitoring damage identification convolutional autoencoder(CAE) extreme gradient boosting tree(xgboost) machine learning
下载PDF
基于BiLSTM-XGBoost混合模型的储层岩性识别 被引量:1
2
作者 杜睿山 黄玉朋 +2 位作者 孟令东 张轶楠 周长坤 《计算机系统应用》 2024年第6期108-116,共9页
储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidi... 储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidirectional long short-term memory,BiLSTM)和极端梯度提升决策树(extreme gradient boosting decision tree,XGBoost),提出双向记忆极端梯度提升(BiLSTM-XGBoost,BiXGB)模型预测储层岩性.该模型在传统XGBoost基础上融入了BiLSTM,大大增强了模型对测井数据的特征提取能力.BiXGB模型使用BiLSTM对测井数据进行特征提取,将提取到的特征传递给XGBoost分类模型进行训练和预测.将BiXGB模型应用于储层岩性数据集时,模型预测的总体精度达到了91%.为了进一步验证模型的准确性和稳定性,将模型应用于UCI公开的Occupancy序列数据集,结果显示模型的预测总体精度也高达93%.相较于其他机器学习模型,BiXGB模型能准确地对序列数据进行分类,提高了储层岩性的识别精度,满足了油气勘探的实际需要,为储层岩性识别提供了新的方法. 展开更多
关键词 神经网络 机器学习 测井数据 岩性分类 BiLSTM xgboost
下载PDF
Tactical intention recognition of aerial target based on XGBoost decision tree 被引量:9
3
作者 WANG Lei LI Shi-zhong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第2期148-152,共5页
In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculat... In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculate the probability of tactical intention.Then the sequence intention probability is obtained by applying Dempster-Shafer rule of combination.To verify the accuracy of recognition results,we compare the experimental results of this paper with the results in the literatures.The experiment shows that the probability of tactical intention recognition through this method is improved,so this method is feasible. 展开更多
关键词 tactical intention recognition of target xgboost(extreme gradient Boosting)decision tree Dempster-Shafer combination rule
下载PDF
基于RFE-BXGBoost的轴承套圈沟道表面缺陷识别方法 被引量:2
4
作者 徐凯 张会妨 《机电工程》 CAS 北大核心 2023年第11期1691-1699,共9页
轴承套圈是轴承部件的重要组成部分,其表面缺陷影响轴承的服役期限。为了解决轴承沟道表面缺陷难以被准确识别的问题,提出了一种基于特征递归消除的贝叶斯极度梯度提升树(RFE-BXGBoost)的轴承套圈沟道表面缺陷识别模型(方法)。首先,基... 轴承套圈是轴承部件的重要组成部分,其表面缺陷影响轴承的服役期限。为了解决轴承沟道表面缺陷难以被准确识别的问题,提出了一种基于特征递归消除的贝叶斯极度梯度提升树(RFE-BXGBoost)的轴承套圈沟道表面缺陷识别模型(方法)。首先,基于特征衍生的思想,对轴承沟道的时域、频域等特征进行了提取,使用了极度梯度提升树(XGBoost)作为基于特征递归消除(RFE)的基学习器,对影响轴承沟道表面缺陷最佳特征子集进行了选择,并过滤了冗余特征;然后,利用基于贝叶斯优化的XGBoost模型组成弱分类器,为了降低模型预测结果的方差,使用有放回随机抽样法,对基分类器进行了选取;最后,根据抽样结果,利用投票法获得了最终的表面缺陷识别结果,并使用轴承套圈沟道实测数据集进行了模型预测性能的测试。实验结果表明:基于RFE-BXGBoost的表面缺陷识别模型的识别准确率为0.90,F1-score为0.879,优于仅使用自适应提升法(Adaboost)、随机森林、梯度提升树的表面缺陷识别结果。研究结果表明:该表面缺陷识别模型对复杂零部件和系统的表面缺陷识别有一定的效果。 展开更多
关键词 滚动轴承 特征递归消除 极度梯度提升树 轴承套圈沟道 有放回随机抽样 集成模型
下载PDF
基于LSTM-XGBoost和多模型算法的短期负荷预测 被引量:1
5
作者 邵必林 庄雪莉 曾卉玢 《计算机时代》 2023年第12期49-54,共6页
针对负荷数据波动性强、特征存在冗余而导致使用单一模型预测短期负荷时精度较低的问题,提出一种融合梯度提升树(GBDT)、自适应噪声完备集合经验模态分解(CEEMDAN)、长短期记忆(LSTM)和极端梯度提升(XGBoost)的短期负荷预测组合方法。... 针对负荷数据波动性强、特征存在冗余而导致使用单一模型预测短期负荷时精度较低的问题,提出一种融合梯度提升树(GBDT)、自适应噪声完备集合经验模态分解(CEEMDAN)、长短期记忆(LSTM)和极端梯度提升(XGBoost)的短期负荷预测组合方法。首先利用GBDT对负荷数据集进行特征选择,筛选出重要特征;然后使用CEEMDAN将负荷序列分解后合并为低频分量和高频分量;再将低频分量输入到LSTM中进行预测,将高频分量输入到XGBoost中进行预测;最后,短期负荷的最终预测结果由两个模型的预测结果进行叠加而成。与单一预测模型相比,所提方法在短期负荷方面具有更高的准确性。 展开更多
关键词 长短期记忆 极端梯度提升 短期负荷预测 自适应噪声完备集合经验模态分解 梯度提升树
下载PDF
基于XGBoost-LSTM的胶凝砂砾石抗压强度预测 被引量:4
6
作者 郭磊 高航 +2 位作者 田青青 郭利霞 李泽宣 《建筑材料学报》 EI CAS CSCD 北大核心 2023年第6期631-637,共7页
针对胶凝砂砾石(CSG)抗压强度试验周期长、耗材大等问题,运用极度梯度提升树-长短期记忆网络(XGBoost-LSTM)组合模型对CSG抗压强度进行预测.先选取相关性较强的“水泥含量”和“砂率”这2个输入变量代入XGBoost模型进行预测,并将结果与... 针对胶凝砂砾石(CSG)抗压强度试验周期长、耗材大等问题,运用极度梯度提升树-长短期记忆网络(XGBoost-LSTM)组合模型对CSG抗压强度进行预测.先选取相关性较强的“水泥含量”和“砂率”这2个输入变量代入XGBoost模型进行预测,并将结果与原特征一起代入LSTM模型;再采用94组抗压强度数据进行训练和验证.结果表明:与基础模型XGBoost和LSTM相比,XGBoost-LSTM组合模型的决定系数分别提高5.6%和3.5%.说明通过XGBoost模型构造新特征具有可行性,且XGBoost-LSTM组合模型能够对CSG抗压强度进行精准预测. 展开更多
关键词 极度梯度提升树 长短期记忆网络 胶凝砂砾石 抗压强度
下载PDF
基于XGBoost算法的家用三相电机故障诊断 被引量:1
7
作者 孙俊佚雄 陈以 《现代信息科技》 2020年第8期41-44,共4页
近年来随着大数据技术的成熟,家用电器在线故障诊断也得到了普及.以洗衣机用的异步电机为对象,提出通过提取定子电流幅值作为特征向量与极端梯度提升算法结合的故障诊断方法.并将该方法与支持向量机、梯度提升决策树算法在实验采集数据... 近年来随着大数据技术的成熟,家用电器在线故障诊断也得到了普及.以洗衣机用的异步电机为对象,提出通过提取定子电流幅值作为特征向量与极端梯度提升算法结合的故障诊断方法.并将该方法与支持向量机、梯度提升决策树算法在实验采集数据和大数据支持下进行对比分析.其仿真结果表明,极端梯度提升算法在处理洗衣机用异步电机故障时,能有效地进行故障类型诊断,诊断精度和泛化能力较强,能够适用于日常生活和商业需要. 展开更多
关键词 特征提取 梯度提升决策树 xgboost 异步电机 故障诊断
下载PDF
基于集成学习的交通事故严重程度预测研究与应用 被引量:3
8
作者 单永航 张希 +2 位作者 胡川 丁涛军 姚远 《计算机工程》 CAS CSCD 北大核心 2024年第2期33-42,共10页
目前自动驾驶技术重点是关注如何主动避免碰撞,然而在面对其他交通参与者入侵而导致不可避免的碰撞事故场景时,预测车辆在不同行驶模式下的碰撞严重程度来降低事故严重程度的研究却很少。为此,提出一种双层Stacking事故严重程度预测模... 目前自动驾驶技术重点是关注如何主动避免碰撞,然而在面对其他交通参与者入侵而导致不可避免的碰撞事故场景时,预测车辆在不同行驶模式下的碰撞严重程度来降低事故严重程度的研究却很少。为此,提出一种双层Stacking事故严重程度预测模型。基于真实交通事故数据集NASS-CDS完成训练,模型输入为车辆传感器可感知得到的事故相关特征,输出为车内乘员最高受伤级别。在第1层中,通过实验对不同学习器组合进行训练,最终综合考虑预测性能以及耗时挑选K近邻、自适应提升树、极度梯度提升树作为基学习器;在第2层中,为降低过拟合,采用逻辑回归作为元学习器。实验结果表明,该方法准确率达到85.01%,在精确率、召回率和F1值方面优于其他个体模型和集成模型,该预测结果可作为智能车辆决策规划模块先验信息,帮助车辆做出正确的决策,减缓事故损害。最后阐述了模型在L_(2)辅助驾驶与L_(4)自动驾驶车辆中的应用,在常规车辆安全防护的基础上进一步提升车辆的安全性。 展开更多
关键词 交通安全 交通事故严重程度预测 智能车辆 集成学习 K近邻 自适应提升树 极度梯度提升树 逻辑回归
下载PDF
基于多中心队列数据的机器学习预测重症感染患儿死亡风险和筛选临床特征的研究
9
作者 朱雪梅 陈申成 +4 位作者 章莹莹 陆国平 叶琪 阮彤 郑英杰 《中国循证儿科杂志》 CSCD 北大核心 2024年第1期31-35,共5页
背景科学、有效地预测重症感染患儿死亡关联因素对降低儿童病死率意义重大。既往重症患儿的病情与死亡关系多采用评分预测(如PCIS等),准确度欠佳。目的通过机器学习联合特征筛选的方法,挖掘对重症感染患儿死亡风险具有早期预警作用的敏... 背景科学、有效地预测重症感染患儿死亡关联因素对降低儿童病死率意义重大。既往重症患儿的病情与死亡关系多采用评分预测(如PCIS等),准确度欠佳。目的通过机器学习联合特征筛选的方法,挖掘对重症感染患儿死亡风险具有早期预警作用的敏感指标。设计队列研究。方法基于全国20个省级行政区域的54家PICU的儿童多中心感染性疾病协作网数据库,纳入年龄>28天至18岁、确诊感染和至少有1个器官发生功能障碍的患儿,统计122项临床特征信息,以出PICU时死亡/恶化或治愈/好转为结局,通过机器学习构建逻辑回归模型(LR)、随机森林模型(RF)、极端梯度提升树(XGB)和反向传播神经网络(BP),筛选重要的临床特征建立重症感染患儿死亡风险预测模型。主要结局指标模型接收者操作特征曲线下面积(AUROC)和模型筛选临床特征性能的优劣。结果2022年4月1日至2023年12月31日协作网数据库中入PICU时确诊重症感染且入PICU时、入PICU 24 h时和出PICU时临床特征记录均完整的(病例1738例,经过数据预处理包括异常值处理、缺失值填充、强制值区间范围检验、归一化处理)1738条信息进入机器学习构建模型。存活或好转患儿1396例,死亡或恶化患儿342例(19.6%)。队列数据按4∶1分为训练集(1390条)和验证集(348条),训练集中存活或好转1116条,死亡或恶化274条;验证集中存活或好转280条,死亡或恶化68条。在训练集中,共输入模型122个临床特征,经过机器模型学习以及特征筛选后,在50轮的5折分层交叉验证下,验证集LR、RF和XGB的AUROC为0.74~0.78。LR、RF和XGB选择重要性大于均值的临床特征构建最优临床特征,尚无比较好的衡量BP特征重要性的方法,LR模型较RF和XGB构建的最优临床特征较为接近临床预期。结论机器学习预测儿童重症感染性疾病死亡/恶化结局表现一般,预测模型筛选的临床特征与临床预期尚有距离。 展开更多
关键词 机器学习 儿童重症监护室 感染 随机森林模型 极端梯度提升树
下载PDF
大规模电力工程数据价值深度挖掘算法设计研究 被引量:1
10
作者 薛礼月 陆瑜峰 王琼 《电子设计工程》 2024年第10期125-129,共5页
针对传统电力工程数据处理方法中存在的不可追溯且不易统一管理等问题,文中基于数据挖掘的思想提出了一种电力工程数据价值分析预测模型。该模型采用Boosting算法将多个预测树结构组合形成极端梯度提升树模型,从而实现对非线性数据的深... 针对传统电力工程数据处理方法中存在的不可追溯且不易统一管理等问题,文中基于数据挖掘的思想提出了一种电力工程数据价值分析预测模型。该模型采用Boosting算法将多个预测树结构组合形成极端梯度提升树模型,从而实现对非线性数据的深入分析,且经过多次迭代后,可以使训练准确度与学习效果得到显著提升。通过采用改进的双向长短时记忆网络,增强了模型处理时序性数据的能力。同时还使用误差倒数法将两个算法模型相结合,使其具有更高的预测精度。在实验测试中,所提算法的预测结果更贴近实际值,且其MAPE及RMSE测试指标分别为0.201%和0.039%,在所有对比算法中均为最优,可以对电力工程数据价值进行准确的分析和预测。 展开更多
关键词 数据挖掘 极端梯度提升树 长短时记忆网络 误差倒数法 数据预测
下载PDF
基于极端梯度提升树模型的工程项目安全管理研究
11
作者 陈华伟 谭琳 于强 《科技创新与应用》 2024年第1期119-122,共4页
工程项目安全管理是建筑工程项目核心内容,部分建筑企业对效益的过分追求,导致工程项目经常出现事故。深入研究工程项目安全管理,有利于提高工程质量降低事故发生的概率。如何对项目安全进行管理,如何掌握项目实施过程中出现的各种风险... 工程项目安全管理是建筑工程项目核心内容,部分建筑企业对效益的过分追求,导致工程项目经常出现事故。深入研究工程项目安全管理,有利于提高工程质量降低事故发生的概率。如何对项目安全进行管理,如何掌握项目实施过程中出现的各种风险因素,成为每一个项目管理者目前亟待解决的问题。该文通过运用极端梯度提升树模型对工程项目安全管理进行研究,建立安全管理模型并确立安全等级,为工程管理者对安全管理的决策提供依据。 展开更多
关键词 工程项目 安全管理 安全指标 极端梯度提升树 建筑工程
下载PDF
基于斜回归树及其集成算法的静态电压稳定规则提取 被引量:8
12
作者 贾宏阳 侯庆春 +2 位作者 刘羽霄 张宁 范越 《电力系统自动化》 EI CSCD 北大核心 2022年第1期51-59,共9页
可再生能源渗透率的增加给电力系统安全稳定运行带来持续性的挑战,传统方法分析系统稳定性、控制电网稳定运行变得愈加困难。针对这一难题,提出了内嵌安全稳定约束的电力系统优化运行框架以及用于电力系统安全稳定规则提取的斜回归树及... 可再生能源渗透率的增加给电力系统安全稳定运行带来持续性的挑战,传统方法分析系统稳定性、控制电网稳定运行变得愈加困难。针对这一难题,提出了内嵌安全稳定约束的电力系统优化运行框架以及用于电力系统安全稳定规则提取的斜回归树及其集成算法。该算法首先优化斜划分系数以训练单棵斜回归树,然后利用boosting思想集成斜回归树,并通过正则化方法保证树的稀疏度,增强算法的可解释性。相比神经网络等黑箱模型,文中提出的方法能够提取显式安全稳定规则,为内嵌安全稳定约束的电力系统优化运行奠定了基础。最后,以静态电压稳定问题为例验证算法的有效性,算例验证结果表明所提算法具有良好的可解释性、较强的表示能力和较高的集成效率。 展开更多
关键词 静态电压稳定 高比例可再生能源 集成学习 斜回归树 极端梯度提升算法
下载PDF
基于机器学习的星载短波红外CO_(2)柱浓度估算 被引量:5
13
作者 李静波 张莹 盖荣丽 《中国环境科学》 EI CAS CSCD 北大核心 2023年第4期1499-1509,共11页
利用OCO-2卫星遥感数据、全球碳柱总量观测网(TCCON)站观测数据、NDVI归一化植被指数数据、ERA5大气数据,采用决策树和集成学习(XGBoost、普通随机森林、极端随机森林、梯度提升)对二CO_(2)平均柱浓度进行预测.通过相关性分析、特征选... 利用OCO-2卫星遥感数据、全球碳柱总量观测网(TCCON)站观测数据、NDVI归一化植被指数数据、ERA5大气数据,采用决策树和集成学习(XGBoost、普通随机森林、极端随机森林、梯度提升)对二CO_(2)平均柱浓度进行预测.通过相关性分析、特征选择与特征提取,建立模型预测CO_(2)平均柱浓度,再与TCCON站点的地基观测数据进行比对.通过分析不同模型(决策树、XGBoost、普通随机森林、极端随机森林、梯度提升)预测的结果,发现使用极端随机森林回归模型预测CO_(2)平均柱浓度的精度最高,R^(2)、均方根误差(RMSE)、平均绝对误差(MAE)、平均相对误差(MRE)分别为:0.953、0.492×10^(-6)、0.260×10^(-6)、0.063%,其余模型次之,因此对极端随机森林回归模型的预测性能随自身参数的影响进行了分析,结果表明,在误差允许的范围内(±2×10^(-6)),极端随机森林回归模型和梯度提升回归模型预测的准确率一样,都为98.10%.由于CO_(2)的背景浓度较高,而边界层内CO_(2)浓度的空间差异相对较小,因此需要进一步缩小误差的范围,在±1×10^(-6)误差范围内,极端随机森林回归模型和梯度提升预测的准确率分别为91.82%和90.51%.所以采用极端随机森林算法预测CO_(2)柱浓度的结果更好,精度更高,符合CO_(2)预测的精度要求. 展开更多
关键词 二氧化碳平均柱浓度 集成学习 极端随机森林 梯度提升 决策树 xgboost 短波红外
下载PDF
网络流量时延特征数据的识别方法仿真 被引量:6
14
作者 周家恺 綦方中 《计算机仿真》 北大核心 2022年第5期398-401,460,共5页
当前的网络流量时延特征识别方法未能在特征识别过程提升流量梯度,导致识别出现较大偏差,且方法的响应时间较长。为此提出基于朴素贝叶斯的网络流量时延特征识别方法。利用移动蜂窝网络通信链路技术和无线资源控制机制造成的网络流量时... 当前的网络流量时延特征识别方法未能在特征识别过程提升流量梯度,导致识别出现较大偏差,且方法的响应时间较长。为此提出基于朴素贝叶斯的网络流量时延特征识别方法。利用移动蜂窝网络通信链路技术和无线资源控制机制造成的网络流量时延波动完成建模分析,同时结合往返时延计算结果,获取与数据时延相关的网络流量特征。通过特征描述得到不同网络节点接入互联网技术差异导致的时序分布。将极端梯度提升树模型和朴素贝叶斯相结合,构建分类器,完成网络流量时延特征的识别。仿真结果表明,所提方法能够获取高精度的网络流量时延特征识别结果,同时还能够有效缩短响应时间。 展开更多
关键词 朴素贝叶斯 网络流量 时延特征识别 极端梯度提升树模型
下载PDF
基于电流谐波特征的矿用电缆劣化监测与故障诊断 被引量:3
15
作者 卢润戈 徐涛 +2 位作者 周卓蓓 李茂 黄潮灿 《工矿自动化》 CSCD 北大核心 2023年第10期35-42,共8页
矿用电缆受煤矿恶劣环境影响,容易发生绝缘劣化、护套受损等情况,传统的矿用电缆检测多采用低压脉冲法、局放法等离线诊断方式,操作复杂,准确度低,难以满足现代煤矿生产需求。而现有基于谐波的电缆故障诊断方法存在检测装置笨重、检测... 矿用电缆受煤矿恶劣环境影响,容易发生绝缘劣化、护套受损等情况,传统的矿用电缆检测多采用低压脉冲法、局放法等离线诊断方式,操作复杂,准确度低,难以满足现代煤矿生产需求。而现有基于谐波的电缆故障诊断方法存在检测装置笨重、检测精确低、难以在煤矿应用等问题。针对上述问题,提出一种基于电流谐波特征的矿用电缆劣化监测与故障诊断方法。提取电缆中高次谐波含量信息作为故障特征向量,对特征向量进行归一化处理后导入极限梯度提升树(XGBoost)模型,结合已知电缆故障劣化度数据,形成训练样本集,训练XGBoost模型,最后通过构建的XGBoost模型对电缆劣化度进行实时监测和故障诊断。仿真结果表明:针对电缆不同部位提取的高次谐波向量的相对能量有明显不同,表明提取的高次谐波向量可表征电缆不同部位的运行状态;XGBoost模型的拟合优度参数R2高达0.93,且误差较小。案例分析结果验证了基于电流谐波特征的矿用电缆劣化监测与故障诊断方法可对矿用电缆运行状态及劣化故障进行实时、准确的监测和诊断。 展开更多
关键词 矿用电缆 故障诊断 劣化监测 电流谐波特征 极限梯度提升树 xgboost模型
下载PDF
蚁群算法分配权重的燃气日负荷组合预测模型 被引量:7
16
作者 周洲 焦文玲 +1 位作者 任乐梅 田兴浩 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2021年第6期177-183,共7页
为适应城镇燃气日负荷随机性和多变性的特点,克服特定时刻单一负荷预测模型存在实际应用局限性的问题,将5种评价准则用于组合预测前剔除冗余模型,提出了一种建立变全重组合预测模型的方法,通过蚁群算法确定分配权重的组合预测模型,使得... 为适应城镇燃气日负荷随机性和多变性的特点,克服特定时刻单一负荷预测模型存在实际应用局限性的问题,将5种评价准则用于组合预测前剔除冗余模型,提出了一种建立变全重组合预测模型的方法,通过蚁群算法确定分配权重的组合预测模型,使得在一个时段上的燃气日负荷预测精度好于各单一模型.首先对包含诸多随机和模糊等不确定因素的城镇燃气日负荷时变系统和各预测模型特点进行分析;然后确定岭回归分析(Ridge)、差分自回归积分滑动平均模型(ARIMA)、支持向量机回归(SVR)、极端梯度提升树(XGB)共4类单项日负荷预测模型,结合城镇燃气日负荷和模型的特点,分别给出每个模型各项参数的设置和模型的输入向量;用平均相对误差、均方根误差、灰色关联度、相关系数、Theil不等系数为评价准则计算出的综合评价指标剔除冗余模型,最后建立了蚁群算法权重分配的组合预测模型.预测实例表明,蚁群算法分配权重的燃气日负荷组合预测模型长期的综合预测效果要优于任意单项模型,相比于单一模型而言,组合预测模型的稳定性和容错率更高,具备较强的泛化能力. 展开更多
关键词 城镇燃气日负荷 组合预测 岭回归 差分自回归积分滑动平均 支持向量机回归 极端梯度提升树 蚁群算法
下载PDF
基于机器学习的跑道占用时间预测模型研究
17
作者 陈亚青 张可欣 李颖哲 《现代计算机》 2022年第24期1-7,共7页
伴随着我国民航事业的迅速发展,运输需求不断增加,通过规范跑道占用时间来提升跑道运行效率成为必然要求。采用了人工神经网络(ANN)、循环神经网络(RNN)、极度梯度提升树(XGBoost)、支持向量机(SVM)四种不同的机器学习方法构建跑道占用... 伴随着我国民航事业的迅速发展,运输需求不断增加,通过规范跑道占用时间来提升跑道运行效率成为必然要求。采用了人工神经网络(ANN)、循环神经网络(RNN)、极度梯度提升树(XGBoost)、支持向量机(SVM)四种不同的机器学习方法构建跑道占用时间预测模型,并对建立的四种跑道占用时间预测模型预测结果进行对比分析。研究发现最适宜用来建立跑道占用时间预测模型的机器学习方法是人工神经网络,利用该方法建立的基于RNN的跑道占用时间预测模型预测效果最好,预测平均绝对误差仅为3.5130。该结论可以为未来研究跑道占用时间预测模型,规范跑道占用时间提供一定参考。 展开更多
关键词 跑道占用时间 人工神经网络(ANN) 循环神经网络(RNN) 极度梯度提升树(xgboost) 支持向量机(SVM)
下载PDF
机器学习方法在舟山渔场主要经济蟹类生物量估算中的应用
18
作者 杨春蕙 栗小东 +1 位作者 刘琦 王迎宾 《海洋科学》 CAS CSCD 北大核心 2023年第9期61-70,共10页
扫海面积法因其操作简单、计算方便,被广泛应用于渔业生物量评估工作中。但该方法需假设资源均匀分布,若要提高生物量评估的准确性,则须增加站位数量,进而增加经费预算。本研究基于2006年8月和2007年1月、5月、11月在舟山渔场海域开展... 扫海面积法因其操作简单、计算方便,被广泛应用于渔业生物量评估工作中。但该方法需假设资源均匀分布,若要提高生物量评估的准确性,则须增加站位数量,进而增加经费预算。本研究基于2006年8月和2007年1月、5月、11月在舟山渔场海域开展渔业资源底拖网调查所获得的多种经济蟹类数据资料,模拟分析扫海面积法与机器学习模型(随机森林(RF)、梯度提升回归树模型(GBRT)、极限梯度提升(XGBoost))对舟山渔场海域三疣梭子蟹(Portunus trituberculatus)、双斑鲟(Charybdis bimaculata)、日本鲟(Charybdis japonica)、细点圆趾蟹(Ovalipes punctatus)4种主要经济蟹类生物量的对比评估效果。结果显示,随着投入站点数目的减少,在数据不集中、波动较大的秋、冬季节XGBoost方法对生物量的评估效果明显优于扫海面积法,误差降低7.49%~21.34%;而在较为均匀的春、夏两季,扫海面积法与机器学习方法两者结果的差异不显著(P<0.05)。本研究以几种经济蟹类为例,探索使用机器学习方法评估其生物量,达到了提高评估准确性并节省资源调查成本的效果,可在其他渔业资源种类生物量评估中推广应用。 展开更多
关键词 资源评估 扫海面积法 随机森林 梯度提升回归树 极限梯度提升回归
下载PDF
中国区域2001―2020年近地面臭氧浓度估算
19
作者 黄凯 骆文慧 +2 位作者 万城 宫明艳 麻金继 《大气与环境光学学报》 CAS 2024年第6期646-664,共19页
随着大气环境治理的不断推进,颗粒物污染显著下降,但臭氧污染问题却日益严峻,因此构建中国区域的长时间地面臭氧数据集对了解地面臭氧的分布传输、推动细颗粒物与臭氧协同治理具有积极影响。本研究结合极端随机树和极端梯度提升两种机... 随着大气环境治理的不断推进,颗粒物污染显著下降,但臭氧污染问题却日益严峻,因此构建中国区域的长时间地面臭氧数据集对了解地面臭氧的分布传输、推动细颗粒物与臭氧协同治理具有积极影响。本研究结合极端随机树和极端梯度提升两种机器学习算法的优势,使用臭氧监测数据、遥感产品以及大气再分析数据构建了中国地表每日最大8 h平均臭氧(MDA8O_(3))浓度估算模型,从样本、空间、时间进行模型精度验证,并分年度、季度、历史尺度、区域尺度验证了模型的时空适用性,并衍生了中国区域全覆盖的2001―2020年臭氧数据产品。结果表明:(1)结合两种算法优势的臭氧估算模型表现出优良的精度,三种精度验证的决定系数R^(2)都在0.89~0.95之间,均方根误差(RMSE)为10.73~15.56μg/m^(3);(2)多种时空验证的结果表明本研究构建的模型能够应用于中国区域大范围、长时间的臭氧估算工作中;(3)本研究构建的臭氧数据产品能够较好地反映地面臭氧的月级、年级的时空分异,更直观地显示臭氧浓度的时空变化。 展开更多
关键词 大气遥感 极端随机树 极端梯度提升 臭氧 时空关联
下载PDF
Ground Passive Microwave Remote Sensing of Atmospheric Profiles Using WRF Simulations and Machine Learning Techniques
20
作者 Lulu ZHANG Meijing LIU +4 位作者 Wenying HE Xiangao XIA Haonan YU Shuangxu LI Jing LI 《Journal of Meteorological Research》 SCIE CSCD 2024年第4期680-692,共13页
Microwave radiometer(MWR) demonstrates exceptional efficacy in monitoring the atmospheric temperature and humidity profiles.A typical inversion algorithm for MWR involves the use of radiosonde measurements as the trai... Microwave radiometer(MWR) demonstrates exceptional efficacy in monitoring the atmospheric temperature and humidity profiles.A typical inversion algorithm for MWR involves the use of radiosonde measurements as the training dataset.However,this is challenging due to limitations in the temporal and spatial resolution of available sounding data,which often results in a lack of coincident data with MWR deployment locations.Our study proposes an alternative approach to overcome these limitations by harnessing the Weather Research and Forecasting(WRF) model's renowned simulation capabilities,which offer high temporal and spatial resolution.By using WRF simulations that collocate with the MWR deployment location as a substitute for radiosonde measurements or reanalysis data,our study effectively mitigates the limitations associated with mismatching of MWR measurements and the sites,which enables reliable MWR retrieval in diverse geographical settings.Different machine learning(ML) algorithms including extreme gradient boosting(XGBoost),random forest(RF),light gradient boosting machine(LightGBM),extra trees(ET),and backpropagation neural network(BPNN) are tested by using WRF simulations,among which BPNN appears as the most superior,achieving an accuracy with a root-mean-square error(RMSE) of 2.05 K for temperature,0.67 g m~(-3) for water vapor density(WVD),and 13.98% for relative humidity(RH).Comparisons of temperature,RH,and WVD retrievals between our algorithm and the sounding-trained(RAD) algorithm indicate that our algorithm remarkably outperforms the latter.This study verifies the feasibility of utilizing WRF simulations for developing MWR inversion algorithms,thus opening up new possibilities for MWR deployment and airborne observations in global locations. 展开更多
关键词 microwave radiometer(MWR) Weather Research and Forecasting(WRF)model extreme gradient boosting(xgboost) random forest(RF) light gradient boosting machine(LightGBM) extra trees(ET) backpropagation neural network(BPNN) monochromatic radiative transfer model(MonoRTM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部