To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele...To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.展开更多
随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据...随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据,对燃煤发热量进行准确预测能够有效地控制电厂运行采购成本。为了实现燃煤发热量的高效预测,采用Pearson系数对相关变量进行特征选取,采用基于密度的噪点空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对某电厂自备煤厂近2年1733条化验数据进行去噪,对去噪后数据进行谱聚类(Spectral Clustering,SC)分析。将分类后的子样本集采用极致梯度提升(Extreme Gradient Boosting,XGBoost)算法分别建立预测模型,并与最小二乘法回归(Ordinary Least Squares,OLS)、支持向量机(Support Vector Machines,SVM)模型进行性能比较。结果表明,基于XGBoost的电站燃煤发热量预测模型相较于其他算法准确性有明显提升,泛化能力更强。对经过SC算法分类后的燃煤分别建立预测模型能够进一步提高模型的精细化水平,为燃煤电站发热量预测提供一种可靠高效的方法。展开更多
目的系统评价基于极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法构建的重症加强护理病房(Intensive Care Unit,ICU)死亡风险预测模型的研究现况。方法检索知网、万方、维普、PubMed、Embase、Web of Science、Scopus数据库,搜...目的系统评价基于极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法构建的重症加强护理病房(Intensive Care Unit,ICU)死亡风险预测模型的研究现况。方法检索知网、万方、维普、PubMed、Embase、Web of Science、Scopus数据库,搜集有关基于XGBoost算法构建的ICU死亡风险预测模型的研究,检索时限均为建库至2023年2月18日。由2名研究者独立筛选文献,提取资料并评价纳入研究的偏倚风险后,进行定性系统评价。结果共纳入12篇文献,纳入模型的受试者工作特征曲线下面积为0.750~0.941。10篇文献适用性较好,其余2篇文献适用性不清楚。12篇文献均存在高偏倚风险,偏倚主要来自于不合适的研究数据来源、研究对象的纳排标准不清晰、预测因子定义与评估不一致、基于单因素分析法筛选预测因子、缺乏完善的模型性能评估等。结论现有基于XGBoost算法构建的ICU死亡风险预测模型具有较好的区分度,但其临床预测的准确性还尚不明确。未来还需进一步完善相关研究设计,避免研究中的各类偏倚风险,加强模型的外部验证,确保模型在临床实践中的可行性及有效性。展开更多
为改善极端梯度提升(extreme gradient boosting,XGBoost)集成算法的信贷风险预测准确率,提出了一种改进的麻雀算法(improved sparrow search algorithm based on golden sine search,Cauchy mutation and oppositionbased learning,GCO...为改善极端梯度提升(extreme gradient boosting,XGBoost)集成算法的信贷风险预测准确率,提出了一种改进的麻雀算法(improved sparrow search algorithm based on golden sine search,Cauchy mutation and oppositionbased learning,GCOSSA)来优化XGBoost参数。采用黄金正弦搜索策略来更新发现者位置,既增强全局搜索能力又增强局部搜索能力;在算法中引入反向学习策略和柯西变异进行扰动来扩大搜索领域改善陷入局部最优,同时使用贪婪规则确定最优解;将改进的算法用6个基准函数进行测试,并对SSA和GCOSSA进行对比,评估GCOSSA寻优性能;用GCOSSA优化XGBoost参数。在数据集上测试,并与网格搜索寻优、SSA及其混合正余弦改进算法(improved sparrow search algorithm based on sine and cosine,ISSA)方法进行对比。结果表明改进后的GCOSSA优化XGBoost参数,在信贷风险预测中准确率更高。展开更多
基金The National Natural Science Foundation of China(No.52361165658,52378318,52078459).
文摘To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.
文摘随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据,对燃煤发热量进行准确预测能够有效地控制电厂运行采购成本。为了实现燃煤发热量的高效预测,采用Pearson系数对相关变量进行特征选取,采用基于密度的噪点空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对某电厂自备煤厂近2年1733条化验数据进行去噪,对去噪后数据进行谱聚类(Spectral Clustering,SC)分析。将分类后的子样本集采用极致梯度提升(Extreme Gradient Boosting,XGBoost)算法分别建立预测模型,并与最小二乘法回归(Ordinary Least Squares,OLS)、支持向量机(Support Vector Machines,SVM)模型进行性能比较。结果表明,基于XGBoost的电站燃煤发热量预测模型相较于其他算法准确性有明显提升,泛化能力更强。对经过SC算法分类后的燃煤分别建立预测模型能够进一步提高模型的精细化水平,为燃煤电站发热量预测提供一种可靠高效的方法。
文摘目的系统评价基于极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法构建的重症加强护理病房(Intensive Care Unit,ICU)死亡风险预测模型的研究现况。方法检索知网、万方、维普、PubMed、Embase、Web of Science、Scopus数据库,搜集有关基于XGBoost算法构建的ICU死亡风险预测模型的研究,检索时限均为建库至2023年2月18日。由2名研究者独立筛选文献,提取资料并评价纳入研究的偏倚风险后,进行定性系统评价。结果共纳入12篇文献,纳入模型的受试者工作特征曲线下面积为0.750~0.941。10篇文献适用性较好,其余2篇文献适用性不清楚。12篇文献均存在高偏倚风险,偏倚主要来自于不合适的研究数据来源、研究对象的纳排标准不清晰、预测因子定义与评估不一致、基于单因素分析法筛选预测因子、缺乏完善的模型性能评估等。结论现有基于XGBoost算法构建的ICU死亡风险预测模型具有较好的区分度,但其临床预测的准确性还尚不明确。未来还需进一步完善相关研究设计,避免研究中的各类偏倚风险,加强模型的外部验证,确保模型在临床实践中的可行性及有效性。
文摘为改善极端梯度提升(extreme gradient boosting,XGBoost)集成算法的信贷风险预测准确率,提出了一种改进的麻雀算法(improved sparrow search algorithm based on golden sine search,Cauchy mutation and oppositionbased learning,GCOSSA)来优化XGBoost参数。采用黄金正弦搜索策略来更新发现者位置,既增强全局搜索能力又增强局部搜索能力;在算法中引入反向学习策略和柯西变异进行扰动来扩大搜索领域改善陷入局部最优,同时使用贪婪规则确定最优解;将改进的算法用6个基准函数进行测试,并对SSA和GCOSSA进行对比,评估GCOSSA寻优性能;用GCOSSA优化XGBoost参数。在数据集上测试,并与网格搜索寻优、SSA及其混合正余弦改进算法(improved sparrow search algorithm based on sine and cosine,ISSA)方法进行对比。结果表明改进后的GCOSSA优化XGBoost参数,在信贷风险预测中准确率更高。