期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
A Double-Weighted Deterministic Extreme Learning Machine Based on Sparse Denoising Autoencoder and Its Applications
1
作者 Liang Luo Bolin Liao +1 位作者 Cheng Hua Rongbo Lu 《Journal of Computer and Communications》 2022年第11期138-153,共16页
Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. Howe... Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. However, due to the traditional ELM shallow architecture, it requires a large number of hidden nodes when dealing with high-dimensional data sets to ensure its classification performance. The other aspect, it is easy to degrade the classification performance in the face of noise interference from noisy data. To improve the above problem, this paper proposes a double pseudo-inverse extreme learning machine (DPELM) based on Sparse Denoising AutoEncoder (SDAE) namely, SDAE-DPELM. The algorithm can directly determine the input weight and output weight of the network by using the pseudo-inverse method. As a result, the algorithm only requires a few hidden layer nodes to produce superior classification results when classifying data. And its combination with SDAE can effectively improve the classification performance and noise resistance. Extensive numerical experiments show that the algorithm has high classification accuracy and good robustness when dealing with high-dimensional noisy data and high-dimensional noiseless data. Furthermore, applying such an algorithm to Miao character recognition substantiates its excellent performance, which further illustrates the practicability of the algorithm. 展开更多
关键词 extreme learning machine Sparse Denoising autoencoder Pseudo-Inverse Method Miao Character Recognition
下载PDF
基于ELM-AE和BP算法的极限学习机特征表示方法
2
作者 苗军 刘晓 +1 位作者 常艺茹 乔元华 《北京信息科技大学学报(自然科学版)》 2024年第1期37-41,共5页
基于极限学习机自编码器(extreme learning machine based autoencoder,ELM-AE)和误差反向传播(back propagation,BP)算法,针对ELM提出了一种改进的特征表示方法。首先,使用ELM-AE以无监督的方式学习紧凑的特征表示,即ELM-AE输出权重;其... 基于极限学习机自编码器(extreme learning machine based autoencoder,ELM-AE)和误差反向传播(back propagation,BP)算法,针对ELM提出了一种改进的特征表示方法。首先,使用ELM-AE以无监督的方式学习紧凑的特征表示,即ELM-AE输出权重;其次,利用ELM-AE输出权重来初始化BP神经网络的输入权重,然后对BP网络进行监督训练;最后,用微调的BP网络输入权重初始化ELM的输入权重参数。在MNIST数据集上的实验结果表明,采用BP算法对ELM-AE学习的参数进行约束,可以得到更紧凑且具有判别性的特征表示,有助于提高ELM的性能。 展开更多
关键词 极限学习机自编码器 误差反向传播 极限学习机
下载PDF
Bridge damage identification based on convolutional autoencoders and extreme gradient boosting trees
3
作者 Duan Yuanfeng Duan Zhengteng +1 位作者 Zhang Hongmei Cheng J.J.Roger 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期221-229,共9页
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele... To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios. 展开更多
关键词 structural health monitoring damage identification convolutional autoencoder(CAE) extreme gradient boosting tree(XGBoost) machine learning
下载PDF
一种基于ELM-AE特征表示的谱聚类算法 被引量:2
4
作者 王丽娟 丁世飞 《智能系统学报》 CSCD 北大核心 2021年第3期560-566,共7页
在实际应用中,数据点中包含的冗余特征和异常值(噪声)严重影响了聚类中更显著的特征的发现,大大降低了聚类性能。本文提出了一种基于ELM-AE(extreme learning machine as autoencoder)特征表示的谱聚类算法(spectral clustering via ext... 在实际应用中,数据点中包含的冗余特征和异常值(噪声)严重影响了聚类中更显著的特征的发现,大大降低了聚类性能。本文提出了一种基于ELM-AE(extreme learning machine as autoencoder)特征表示的谱聚类算法(spectral clustering via extreme learning machine as autoencoder,SC-ELM-AE)。ELM-AE通过奇异值分解学习源数据主要特征表示,使用输出权值实现从特征空间到原输入数据的重构;再将该特征表示空间作为输入进行谱聚类。实验表明,在5个UCI数据集验证中,SC-ELM-AE算法性能优于传统的K-Means、谱聚类等现有算法,特别是在复杂高维数据集PEMS-SF和TDT2_10上,聚类平均精确度均提高30%以上。 展开更多
关键词 谱聚类 特征表示 极限学习机 自编码器 极限学习机自编码器 机器学习 聚类分析 数据挖掘
下载PDF
利用ELM-AE和迁移表征学习构建的目标跟踪系统 被引量:1
5
作者 杨政 邓赵红 +2 位作者 罗晓清 顾鑫 王士同 《计算机科学与探索》 CSCD 北大核心 2022年第7期1633-1648,共16页
在目标跟踪算法中,特征模型对图像特征的快速学习能力和对跟踪过程中目标特征变化的自适应能力一直是目标跟踪算法的主要研究方向之一。特别是对于基于图像块学习的判别式目标跟踪器而言,这两点已然成为影响跟踪器效率和鲁棒性的决定性... 在目标跟踪算法中,特征模型对图像特征的快速学习能力和对跟踪过程中目标特征变化的自适应能力一直是目标跟踪算法的主要研究方向之一。特别是对于基于图像块学习的判别式目标跟踪器而言,这两点已然成为影响跟踪器效率和鲁棒性的决定性因素。然而,现有的大多数同类算法在这两个能力上的性能并不能达到令人满意的效果。为了解决这一问题,提出了一种高效且鲁棒的特征模型。该特征模型首先利用基于极限学习机的自编码器(ELM-AE)对目标和背景图像块的复杂图像特征快速地进行随机特征映射,再利用迁移表征学习(TRL)的迁移学习能力提高随机特征空间的自适应性。将该特征模型命名为基于ELM自编码器和迁移表征学习的特征模型(TRL-ELM-AE)。与原复杂图像特征相比,通过该模型可以获得更加紧凑且具有表达能力的共享特征。从而使得分类器可以快速高效地学习和分类。此外,在目标跟踪过程中,目标与背景通常会随着时间不停地变化。虽然TRL的特征迁移能力已经可以很好地适应这一点,但是为了进一步提高跟踪器的鲁棒性,还采用了一种动态更新训练样本的策略。通过对OTB提出的11项目标跟踪挑战场景进行大量实验和分析,证明了所提的目标跟踪器较现有的目标跟踪器具有显著优势。 展开更多
关键词 极限学习机(ELM) 极限学习机自编码器(elm-ae) 迁移表征学习(TRL) 特征自适应 高斯朴素贝叶斯分类器(GNBC) 目标跟踪
下载PDF
Software Defect Prediction Based on Stacked Contractive Autoencoder and Multi-Objective Optimization 被引量:2
6
作者 Nana Zhang Kun Zhu +1 位作者 Shi Ying Xu Wang 《Computers, Materials & Continua》 SCIE EI 2020年第10期279-308,共30页
Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mos... Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mostly regard software defect prediction as a single objective optimization problem,and multi-objective software defect prediction has not been thoroughly investigated.For the above two reasons,we propose the following solutions in this paper:(1)we leverage an advanced deep neural network-Stacked Contractive AutoEncoder(SCAE)to extract the robust deep semantic features from the original defect features,which has stronger discrimination capacity for different classes(defective or non-defective).(2)we propose a novel multi-objective defect prediction model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimize the advanced neural network-Extreme learning machine(ELM)based on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE.We mainly consider two objectives.One objective is to maximize the performance of ELM,which refers to the benefit of the SMONGE model.Another objective is to minimize the output weight norm of ELM,which is related to the cost of the SMONGE model.We compare the SCAE with six state-of-the-art feature extraction methods and compare the SMONGE model with multiple baseline models that contain four classic defect predictors and the MONGE model without SCAE across 20 open source software projects.The experimental results verify that the superiority of SCAE and SMONGE on seven evaluation metrics. 展开更多
关键词 Software defect prediction deep neural network stacked contractive autoencoder multi-objective optimization extreme learning machine
下载PDF
基于表层温度深度学习的电缆接头绝缘劣化非接触式诊断
7
作者 严丹昭 陈晶 +1 位作者 兰旺耀 廖一鹏 《红外技术》 CSCD 北大核心 2024年第6期712-721,共10页
为提升电缆中间接头绝缘层劣化程度的现场诊断效率和准确度,提出一种基于表层温度自适应深度学习的接头绝缘劣化状态非接触式诊断方法。首先,对电缆接头及两端电缆的绝缘表层进行红外热成像,实现电缆接头中心两边多个对称区域的表层温... 为提升电缆中间接头绝缘层劣化程度的现场诊断效率和准确度,提出一种基于表层温度自适应深度学习的接头绝缘劣化状态非接触式诊断方法。首先,对电缆接头及两端电缆的绝缘表层进行红外热成像,实现电缆接头中心两边多个对称区域的表层温度、接头两端电缆的表层温度的非接触式采集;其次,构建基于双隐层自编码极限学习机的深度学习网络,以挖掘表层温度数据内部深层次隐含特征,将提取的深度隐含特征作为随机森林诊断模型输入;然后,提出一种非线性动态自适应旋转角的量子旋转门以改进量子烟花算法的更新策略,并用于诊断模型参数优化;最后,结合接头表层红外温度和绝缘介质损耗角正切值构建数据集,对诊断模型进行训练和现场测试。实验结果表明,改进后的量子烟花算法可以较好地逼近全局最优解、收敛效率高,深度学习随机森林诊断模型具有较强的特征抽取和分类能力,参数优化后诊断模型的分类精度和稳定性得到有效提高,在小样本训练集条件下就能达到较好的诊断效果,可实现接头绝缘劣化状态的非接触式诊断。 展开更多
关键词 电缆中间接头 红外测温 绝缘劣化诊断 双隐层自编码极限学习机 随机森林 量子烟花算法
下载PDF
深度在线小波极限学习在旋转机械故障诊断中的应用 被引量:1
8
作者 王椿晶 王海瑞 《机械科学与技术》 CSCD 北大核心 2023年第7期1029-1034,共6页
由于旋转机械故障诊断模型训练时间长,容易过拟合以及传统的极限学习机只能处理批量数据,实效性差等问题。提出一种基于深度在线小波极限学习机的旋转机械故障诊断方法。将自编码器的思想引入小波极限学习机中,堆叠形成WELM-AE,将底层... 由于旋转机械故障诊断模型训练时间长,容易过拟合以及传统的极限学习机只能处理批量数据,实效性差等问题。提出一种基于深度在线小波极限学习机的旋转机械故障诊断方法。将自编码器的思想引入小波极限学习机中,堆叠形成WELM-AE,将底层的故障特征向更加抽象的高级特征转换。再采用在线极限学习机作为顶层分类器进行故障识别。实验结果验证:该算法在旋转机械故障诊断上的可行性,继承了极限学习机训练速度快的特点,相较于BP、SVM、SAE、CNN有更高的准确率。 展开更多
关键词 旋转机械 故障诊断 深度小波极限学习机自编码器 在线极限学习机
下载PDF
基于深度信念网络的模拟电路故障诊断 被引量:1
9
作者 郭爱军 鞠晨 《自动化技术与应用》 2023年第2期76-80,共5页
为及时精准地发现模拟电路故障,保障电子仪表的安全稳定运行,提出了基于深度信念网络的模拟电路故障诊断方法。采用自动编码器模拟电路初始故障信号进行降噪处理,将降噪后信号输入到深度信念网络中提取特征,极限学习机根据特征建立故障... 为及时精准地发现模拟电路故障,保障电子仪表的安全稳定运行,提出了基于深度信念网络的模拟电路故障诊断方法。采用自动编码器模拟电路初始故障信号进行降噪处理,将降噪后信号输入到深度信念网络中提取特征,极限学习机根据特征建立故障诊断模型,结果表明,深度信念网络可以有效提取模拟电路各类故障特征,模拟电路各类故障的整体诊断精确率可达到98.47%,可为模拟电路保障诊断提供了一种新的工具。 展开更多
关键词 深度信念网络 模拟电路 故障诊断 自动编码器 特征提取 极限学习机
下载PDF
基于双模态深度自编码的孤立性肺结节诊断方法 被引量:8
10
作者 赵鑫 强彦 葛磊 《计算机科学》 CSCD 北大核心 2017年第8期312-317,共6页
近年来,深度学习技术在肺癌诊断方面得到了广泛的应用,但现有的研究主要集中于肺部CT图像。为了有效提高肺结节的诊断性能,提出一种基于双模态深度降噪自编码的肺结节诊断方法。首先,分别从肺部CT和PET图像中得到肺结节区域的特征信息;... 近年来,深度学习技术在肺癌诊断方面得到了广泛的应用,但现有的研究主要集中于肺部CT图像。为了有效提高肺结节的诊断性能,提出一种基于双模态深度降噪自编码的肺结节诊断方法。首先,分别从肺部CT和PET图像中得到肺结节区域的特征信息;然后,以候选结节的PET/CT图像作为整个深度自编码网络的输入,并对高层信息进行学习;最后,采用融合策略对多种特征进行融合并将其作为整个框架的输出。实验结果表明,提出的方法可以达到92.81%的准确率、91.75%的敏感度和1.58%的特异性,且优于其他方法的诊断性能,更适用于肺结节良/恶性的辅助诊断。 展开更多
关键词 降噪自编码 双模态 深度学习 极限学习机 肺结节辅助诊断
下载PDF
ELM优化的深度自编码分类算法 被引量:6
11
作者 徐毅 董晴 +1 位作者 戴鑫 宋威 《计算机科学与探索》 CSCD 北大核心 2018年第5期820-827,共8页
针对自编码神经网络训练时间长的问题,提出了一种改进的深度自编码神经网络算法。首先利用极限学习机(extreme learning machine,ELM)作为自编码块,构建多层自编码神经网络,以提高分类准确率。采用ELM能避免大量的迭代过程,减少网络训... 针对自编码神经网络训练时间长的问题,提出了一种改进的深度自编码神经网络算法。首先利用极限学习机(extreme learning machine,ELM)作为自编码块,构建多层自编码神经网络,以提高分类准确率。采用ELM能避免大量的迭代过程,减少网络训练时间。其次为实现分类,在各输出层中加入标签节点,对实际输出与各样本的期望标签进行比对,使原始的自编码无监督学习转化为监督学习过程,从而在深度学习的过程中实现分类训练。为验证该方法的有效性,在多个UCI数据集中进行广泛的测试。实验结果表明,与其他自编码网络和RBF(radial basis function)神经网络相比,该方法取得了良好的分类准确率,并且有效提高了训练速度。 展开更多
关键词 深度神经网络 极限学习机 自编码 分类
下载PDF
基于短波近红外高光谱和深度学习的籽棉地膜分选算法 被引量:18
12
作者 倪超 李振业 +3 位作者 张雄 赵岭 朱婷婷 蒋雪松 《农业机械学报》 EI CAS CSCD 北大核心 2019年第12期170-179,共10页
采用膜下滴灌棉花种植模式,在机械采摘过程中地膜易混入籽棉,对后续棉花加工影响极大。地膜无色透明且无荧光效应,常规方法很难识别。为了解决地膜的分选问题,提出一种基于短波近红外高光谱和深度学习的籽棉地膜分选算法。首先,针对高... 采用膜下滴灌棉花种植模式,在机械采摘过程中地膜易混入籽棉,对后续棉花加工影响极大。地膜无色透明且无荧光效应,常规方法很难识别。为了解决地膜的分选问题,提出一种基于短波近红外高光谱和深度学习的籽棉地膜分选算法。首先,针对高光谱图像中地膜与非地膜像素点光谱特征区分不明显的问题,利用堆叠自适应加权自编码器逐层提取与输出相关的低维非线性高阶特征;然后,将此高阶特征作为分类器的输入,采用粒子群优化的极限学习机实现初步分类;最后,对分类结果进行类型合并,运用形态学方法以及连通域分析,剔除误识别区域,得到优化后的地膜分类结果。经仿真试验及现场测试,算法对地膜识别率达到95.5%,地膜选出率达95%,满足实际生产需求。 展开更多
关键词 籽棉 地膜 短波近红外高光谱成像 分选 自适应加权自编码器 极限学习机
下载PDF
结合双模多尺度CNN特征及自适应深度KELM的浮选工况识别 被引量:9
13
作者 廖一鹏 张进 +1 位作者 王志刚 王卫星 《光学精密工程》 EI CAS CSCD 北大核心 2020年第8期1785-1798,共14页
针对可见光图像特征驱动的浮选工况识别方法的不足,提出一种基于双模态图像多尺度CNN特征及自适应深度自编码核极限学习机(Kernel Extreme Learning Machine,KELM)的浮选工况识别方法。先对泡沫的可见光、红外图像进行非下采样剪切波多... 针对可见光图像特征驱动的浮选工况识别方法的不足,提出一种基于双模态图像多尺度CNN特征及自适应深度自编码核极限学习机(Kernel Extreme Learning Machine,KELM)的浮选工况识别方法。先对泡沫的可见光、红外图像进行非下采样剪切波多尺度分解,设计双通道CNN网络对双模态多尺度图像进行特征提取及融合,将多个双隐层自编码极限学习机串联成深度学习网络对CNN特征逐层抽象提取,然后通过核极限学习机映射到更高维空间进行决策,最后改进量子细菌觅食算法并应用于深度自编码KELM识别模型参数优化。实验结果表明采用双模多尺度CNN特征较单模多尺度、双模单尺度CNN特征的识别精度提高了2.65%,自适应深度自编码KELM模型具有较好的分类精度和泛化性能,各工况识别的平均准确率达到95.98%,识别精度和稳定性较现有方法有较大提升。 展开更多
关键词 浮选工况识别 双模态图像 卷积神经网络 深度双隐层自编码极限学习机 量子细菌觅食算法
下载PDF
基于核极限学习机自编码器的转盘轴承寿命状态识别 被引量:5
14
作者 潘裕斌 王华 +1 位作者 陈捷 洪荣晶 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第9期1856-1866,共11页
针对低速重载转盘轴承运行工况恶劣、故障特征微弱的特点,提出基于飞蛾扑火算法优化多层核极限学习机自编码器(MFO-MLKELM-AE)的转盘轴承寿命状态识别方法.该方法从振动信号的时域和时频域中提取出多个能够表征转盘轴承运行状态的特征向... 针对低速重载转盘轴承运行工况恶劣、故障特征微弱的特点,提出基于飞蛾扑火算法优化多层核极限学习机自编码器(MFO-MLKELM-AE)的转盘轴承寿命状态识别方法.该方法从振动信号的时域和时频域中提取出多个能够表征转盘轴承运行状态的特征向量,并将其组成高维特征集.采用堆叠多层核极限学习机自编码器(MLKELM-AE),从高维特征集中提取最能反映转盘轴承的寿命状态信息,输入核极限学习机(KELM)模型进行寿命状态识别.在MLKELM-AE学习训练中,采用新的飞蛾扑火算法(MFO)优化惩罚系数和核参数,提高MLKELM-AE的特征识别能力.转盘轴承加速寿命实验表明,MLKELM-AE比多层极限学习机自编码器(MLELMAE)、单层极限学习机(ELM)、KELM的识别精度高,多传感器、多领域特征能够全面反映转盘轴承的寿命状态. 展开更多
关键词 低速重载转盘轴承 多层核极限学习机自编码器(MLKelm-ae) 飞蛾扑火算法(MFO) 寿命状态识别 多领域特征
下载PDF
基于POS-ELM的孤立性肺结节诊断方法研究 被引量:3
15
作者 葛磊 强彦 张伟 《科学技术与工程》 北大核心 2016年第36期55-60,67,共7页
在肺结节诊断方法研究中,传统机器学习诊断方法存在诊断性能不稳定的问题。为了提高孤立性肺结节的识别准确率,提出基于粒子群优化(particle swarm optimization,PSO)参数的极限学习机(extreme learning machine,ELM)辅助诊断方法。首... 在肺结节诊断方法研究中,传统机器学习诊断方法存在诊断性能不稳定的问题。为了提高孤立性肺结节的识别准确率,提出基于粒子群优化(particle swarm optimization,PSO)参数的极限学习机(extreme learning machine,ELM)辅助诊断方法。首先采用PSO选取ELM最佳的初始权重ω和偏置b;然后利用最佳参数ω和b对ELM进行训练;再利用PSO-ELM对通过稀疏自编码得到的肺结节特征进行分类识别。实验中,将传统机器学习算法与本文方法进行对比,结果表明,利用粒子群优化算法进行优化的极限学习机在孤立性肺结节诊断方面具有较高识别准确率和稳定的分类性能,可以作为一种有效的肺结节诊断工具。 展开更多
关键词 粒子群优化算法 极限学习机 孤立性肺结节 稀疏自编码 计算机辅助诊断
下载PDF
NSST域改进ORB的泡沫流动特征提取及加药状态识别 被引量:3
16
作者 廖一鹏 陈诗媛 +2 位作者 杨洁洁 王志刚 王卫星 《光学精密工程》 EI CAS CSCD 北大核心 2020年第12期2684-2699,共16页
针对浮选泡沫表面图像动态变化、光照影响、噪声干扰导致流动特征难于提取的问题,提出了一种在NSST域改进ORB的泡沫流动特征提取方法,并应用于浮选加药状态识别。对相邻两帧泡沫图像NSST分解,对多尺度高频子带先通过尺度相关系数去除噪... 针对浮选泡沫表面图像动态变化、光照影响、噪声干扰导致流动特征难于提取的问题,提出了一种在NSST域改进ORB的泡沫流动特征提取方法,并应用于浮选加药状态识别。对相邻两帧泡沫图像NSST分解,对多尺度高频子带先通过尺度相关系数去除噪声再分为多个内层和外层,在各内层通过方向模极大值检测提取兴趣点,然后在本层和上下层通过非极大值抑制提取特征点,采用多尺度BRIEF描述子对特征点描述,结合泡沫的运动趋势动态调整搜索的匹配区域,根据匹配结果计算泡沫流动特征。最后,构建行列自编码极限学习机对泡沫形态、尺寸分布特征和流动特征进行融合,然后通过自适应随机森林对加药状态分类识别。实验结果表明,改进的ORB受噪声和光照影响小,流动特征检测精度和效率较现有方法有较大提高,能准确地表征不同加药状态下泡沫表面的流动特性,加药状态的平均识别精度达97.85%,较现有文献方法有较大提升,为后续的加药量优化控制奠定基础。 展开更多
关键词 浮选泡沫图像 流动特征提取 ORB 非下采样剪切波变换 行列自编码极限学习机 自适应随机森林
下载PDF
基于多层超限学习机的滚动轴承故障诊断方法 被引量:6
17
作者 郝丽娜 王风立 曹瑞珉 《科学技术与工程》 北大核心 2017年第14期86-91,共6页
针对目前轴承故障诊断领域存在的海量数据问题及快速学习、实时监测的诊断要求,采用一种多层超限学习机方法对滚动轴承故障数据进行诊断测试。该方法直接学习轴承故障振动时域信号,与传统诊断方法相比,省去了复杂的信号处理过程,更加简... 针对目前轴承故障诊断领域存在的海量数据问题及快速学习、实时监测的诊断要求,采用一种多层超限学习机方法对滚动轴承故障数据进行诊断测试。该方法直接学习轴承故障振动时域信号,与传统诊断方法相比,省去了复杂的信号处理过程,更加简便。将多层超限学习机方法的诊断结果分别与单层超限学习机、深度神经网络方法的诊断结果进行比较,多层超限学习机具有明显优势:(1)与单层超限学习机相比,多层超限学习机具有更好地学习和特征提取能力,其诊断准确率可达到98.29%;(2)与深度神经网络相比,多层超限学习机能够在保证较高诊断准确率的前提下,获得较快的训练速度,其训练速度较深度神经网络提高了41倍。结果表明,所采用的方法在滚动轴承故障诊断方面具有很好的效果和应用价值。 展开更多
关键词 超限学习机 故障诊断 深度学习 自动编码器 快速学习
下载PDF
子空间结构保持的多层极限学习机自编码器 被引量:3
18
作者 陈晓云 陈媛 《自动化学报》 EI CAS CSCD 北大核心 2022年第4期1091-1104,共14页
处理高维复杂数据的聚类问题,通常需先降维后聚类,但常用的降维方法未考虑数据的同类聚集性和样本间相关关系,难以保证降维方法与聚类算法相匹配,从而导致聚类信息损失.非线性无监督降维方法极限学习机自编码器(Extreme learning machin... 处理高维复杂数据的聚类问题,通常需先降维后聚类,但常用的降维方法未考虑数据的同类聚集性和样本间相关关系,难以保证降维方法与聚类算法相匹配,从而导致聚类信息损失.非线性无监督降维方法极限学习机自编码器(Extreme learning machine,ELM-AE)因其学习速度快、泛化性能好,近年来被广泛应用于降维及去噪.为使高维数据投影至低维空间后仍能保持原有子空间结构,提出基于子空间结构保持的多层极限学习机自编码器降维方法(Multilayer extreme learning machine autoencoder based on subspace structure preserving,ML-SELM-AE).该方法在保持聚类样本多子空间结构的同时,利用多层极限学习机自编码器捕获样本集的深层特征.实验结果表明,该方法在UCI数据、脑电数据和基因表达谱数据上可以有效提高聚类准确率且取得较高的学习效率. 展开更多
关键词 多层极限学习机 自编码器 子空间学习 降维
下载PDF
基于QPSO正则化极限学习机的轴承故障诊断 被引量:5
19
作者 刘鑫 任海莉 《组合机床与自动化加工技术》 北大核心 2021年第3期36-40,共5页
从复杂的振动信号中提取有效的故障特征并且得到准确的分类结果,建立可靠的故障诊断方法一直都是滚动轴承故障诊断研究中的关键课题。文章提出一种改进的正则化极限学习机(Regularized Extreme Learning Machine,RELM)应用于降噪自动编... 从复杂的振动信号中提取有效的故障特征并且得到准确的分类结果,建立可靠的故障诊断方法一直都是滚动轴承故障诊断研究中的关键课题。文章提出一种改进的正则化极限学习机(Regularized Extreme Learning Machine,RELM)应用于降噪自动编码器(Denoising AutoEncoder,DAE)的故障分类方法。首先,将振动信号经过快速傅里叶变换得到的频域系数作为高维数据,然后利用堆叠降噪自动编码器(Stacked Denoising Autoencoders,SDAE)对高维数据进行学习,提取更具鲁棒性的特征,再将该特征作为RELM的输入进行分类,得到故障诊断模型。针对RELM中正则化参数选取困难问题,采用量子粒子群优化算法(Quantum-behaved particle swarm optimization,QPSO)进行参数优化。实验结果表明,基于SDAE-RELM的诊断方法在泛化性和故障识别率都优于SDAE和其他分类算法结合的故障识别方法。 展开更多
关键词 滚动轴承 降噪自动编码器 正则化极限学习机 特征提取
下载PDF
基于去噪自编码器的极限学习机 被引量:5
20
作者 来杰 王晓丹 +1 位作者 李睿 赵振冲 《计算机应用》 CSCD 北大核心 2019年第6期1619-1625,共7页
针对极限学习机算法(ELM)参数随机赋值降低算法鲁棒性及性能受噪声影响显著的问题,将去噪自编码器(DAE)与ELM算法相结合,提出了基于去噪自编码器的极限学习机算法(DAE-ELM)。首先,通过去噪自编码器产生ELM的输入数据、输入权值与隐含层... 针对极限学习机算法(ELM)参数随机赋值降低算法鲁棒性及性能受噪声影响显著的问题,将去噪自编码器(DAE)与ELM算法相结合,提出了基于去噪自编码器的极限学习机算法(DAE-ELM)。首先,通过去噪自编码器产生ELM的输入数据、输入权值与隐含层参数;然后,以ELM求得隐含层输出权值,完成对分类器的训练。该算法一方面继承了DAE的优点,自动提取的特征更具代表性与鲁棒性,对于噪声有较强的抑制作用;另一方面克服了ELM参数赋值的随机性,增强了算法鲁棒性。实验结果表明,在不含噪声影响下DAE-ELM相较于ELM、PCA-ELM、SAA-2算法,其分类错误率在MNIST数据集中至少下降了5.6%,在Fashion MNIST数据集中至少下降了3.0%,在Rectangles数据集中至少下降了2.0%,在Convex数据集中至少下降了12.7%。 展开更多
关键词 极限学习机 深度学习 去噪自编码器 特征提取 特征降维 鲁棒性
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部