期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Design and optimization of fluid lubricated bearings operated with extreme working performances——a comprehensive review
1
作者 Guohua Zhang Ming Huang +6 位作者 Gangli Chen Jiasheng Li Yang Liu Jianguo He Yueqing Zheng Siwei Tang Hailong Cui 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期325-376,共52页
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge... Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances. 展开更多
关键词 fluid lubricated bearings structural design performance optimization extreme working performances
下载PDF
Instance-Specific Algorithm Selection via Multi-Output Learning 被引量:1
2
作者 Kai Chen Yong Dou +1 位作者 Qi Lv Zhengfa Liang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第2期210-217,共8页
Instance-specific algorithm selection technologies have been successfully used in many research fields,such as constraint satisfaction and planning. Researchers have been increasingly trying to model the potential rel... Instance-specific algorithm selection technologies have been successfully used in many research fields,such as constraint satisfaction and planning. Researchers have been increasingly trying to model the potential relations between different candidate algorithms for the algorithm selection. In this study, we propose an instancespecific algorithm selection method based on multi-output learning, which can manage these relations more directly.Three kinds of multi-output learning methods are used to predict the performances of the candidate algorithms:(1)multi-output regressor stacking;(2) multi-output extremely randomized trees; and(3) hybrid single-output and multioutput trees. The experimental results obtained using 11 SAT datasets and 5 Max SAT datasets indicate that our proposed methods can obtain a better performance over the state-of-the-art algorithm selection methods. 展开更多
关键词 algorithm selection multi-output learning extremely randomized trees performance prediction constraint satisfaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部