In this study, a morphodynamic numerical model is established with the Regional Ocean Modeling System(ROMS)to investigate the transient behavior of sand waves under realistic sea conditions. The simulation of sand wav...In this study, a morphodynamic numerical model is established with the Regional Ocean Modeling System(ROMS)to investigate the transient behavior of sand waves under realistic sea conditions. The simulation of sand wave evolution comprises two steps: 1) a regional-scale model is configured first to simulate the ocean hydrodynamics, i.e., tides and tidal currents, and 2) the transient behavior of sand waves is simulated in a small computational domain under the time-variant currents extracted from the large model. The evolution of sand waves on the continental shelf in the Beibu Gulf is specifically investigated. The numerical results of the two-year evolution of sand waves under normal sea conditions compare well with the field survey data. The transient behavior of sand waves in individual months shows that the sand waves are more stable in April and October than that in other months, which can be selected as the windows for seabed operations. The effects of sediment properties, including settling velocity, critical shear stress and surface erosion rate, on sand wave evolution are also analyzed. Then, the typhoon-induced currents are further superimposed on the tidal currents as the extreme weather conditions. Sand waves with the average wavelength generally have more active behavior than smaller or larger sand waves. The characteristics of the evolution of sand waves in an individual typhoon process are quite different for different hydrodynamic combinations. For the storm conditions, i.e., the real combination and maximum combination cases, the sand waves experience a significant migration together with a damping in height due to the dominant suspended sediment transport. For the mild conditions, i.e., the pure tidal current and minimum combination cases, the sand waves migrate less, but the heights continue growing due to the dominant bedload transport.展开更多
Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and instal...Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm.展开更多
Mean sea level rise and climatological wind speed changes occur as part of the ongoing climate change and future projections of both variables are still highly uncertain. Here the Baltic Sea’s response in extreme sea...Mean sea level rise and climatological wind speed changes occur as part of the ongoing climate change and future projections of both variables are still highly uncertain. Here the Baltic Sea’s response in extreme sea levels to perturbations in mean sea level and wind speeds is investigated in a series of simulations with a newly developed storm surge model based on the nucleus for European modeling of the ocean(NEMO)-Nordic. A simple linear model with only two tunable parameters is found to capture the changes in the return levels extremely well. The response to mean sea level rise is linear and nearly spatially uniform, meaning that a mean sea level rise of 1 m increases the return levels by a equal amount everywhere. The response to wind speed perturbations is more complicated and return levels are found to increase more where they are already high. This behaviour is alarming as it suggests that already flooding prone regions like the Gulf of Finland will be disproportionally adversely affected in a future windier climate.展开更多
Record-breaking high waves occurred during the passage of the typhoon Bolaven(1215)(TYB) in the East China Sea(ECS) and Yellow Sea(YS) although its intensity did not reach the level of a super typhoon.Winds an...Record-breaking high waves occurred during the passage of the typhoon Bolaven(1215)(TYB) in the East China Sea(ECS) and Yellow Sea(YS) although its intensity did not reach the level of a super typhoon.Winds and directional wave measurements were made using a range of in-situ instruments mounted on an ocean tower and buoys.In order to understand how such high waves with long duration occurred,analyses have been made through measurement and numerical simulations.TYB winds were generated using the TC96 typhoon wind model with the best track data calibrated with the measurements.And then the wind fields were blended with the reanalyzed synoptic-scale wind fields for a wave model.Wave fields were simulated using WAM4.5 with adjustment of C_d for gust of winds and bottom friction for the study area.Thus the accuracy of simulations is considerably enhanced,and the computed results are also in better agreement with measured data than before.It is found that the extremely high waves evolved as a result of the superposition of distant large swells and high wind seas generated by strong winds from the front/right quadrant of the typhoon track.As the typhoon moved at a speed a little slower than the dominant wave group velocity in a consistent direction for two days,the wave growth was significantly enhanced by strong wind input in an extended fetch and non-linear interaction.展开更多
In offshore engineering design, it is considerably significant to have an adequately accurate estimation of marine environmental parameters, in particular, the extreme wind speed of tropical cyclone (TC) with differ...In offshore engineering design, it is considerably significant to have an adequately accurate estimation of marine environmental parameters, in particular, the extreme wind speed of tropical cyclone (TC) with different return periods to guarantee the safety in projected operating life period. Based on the 71-year (1945-2015) TC data in the Northwest Pacific (NWP) by the Joint Typhoon Warning Center (JTWC) of US, a notable growth of the TC intensity is observed in the context of climate change. The fact implies that the traditional stationary model might be incapable of predicting parameters in the extreme events. Therefore, a non-stationary model is proposed in this study to estimate extreme wind speed in the South China Sea (SCS) and NWP. We find that the extreme wind speeds of different return periods exhibit an evident enhancement trend, for instance, the extreme wind speeds with different return periods by non- stationary model are 4.1%-4.4% higher than stationary ones in SCS. Also, the spatial distribution of extreme wind speed in NWP has been examined with the same methodology by dividing the west sea areas of the NWP 0°-45°N, 105°E-130°E into 45 subareas of 5° × 5°, where oil and gas resources are abundant. Similarly, remarkable spacial in-homogeneity in the extreme wind speed is seen in this area: the extreme wind speed with 50-year return period in the subarea (15°N-20°N, 115°E-120°E) of Zhongsha and Dongsha Islands is 73.8 m/s, while that in the subarea of Yellow Sea (30°N-35°N, 120°E-125°E) is only 47.1 m/s. As a result, the present study demonstrates that non-stationary and in-homogeneous effects should be taken into consideration in the estimation of extreme wind speed.展开更多
Coastal flooding caused by tropical cyclones has long been a major threat to life,property,and infrastructure in coastal zones.This study assessed the risk of flooding in Chittagong,southeastern Bangladesh,under extre...Coastal flooding caused by tropical cyclones has long been a major threat to life,property,and infrastructure in coastal zones.This study assessed the risk of flooding in Chittagong,southeastern Bangladesh,under extreme sea level scenarios caused by high astronomical tides and storm surges.The Jelesnianski typhoon model and the ADvanced CIRCulation hydrodynamic model were used to simulate 91 typhoons that occurred in the Bay of Bengal between 1981 and 2017,and observational data were used for model validation.The inundation model was based on a digital elevation model and a seed spread algorithm,and a geographical information system was used to visualize the flood risk.Under four scenarios,the changes in flood levels caused by sea level rise had no signifi-cant influence on the extent of flooding in Chittagong.At flood levels of 8.82m(50-year storm surge without sea level rise)and 8.89 m(50-year storm surge with sea level rise),the maximum estimated area of inundation was 11.35 km^(2).The western coastal and southeastern river coastal plain areas of Chittagong have the highest risk of inundation due to their low-lying terrain.At flood levels of 9.83m(100-year storm surge without sea level rise)and 9.97m(100-year storm surge with sea level rise),the maximum simulated flood extent was 36.44km^(2).Simulated floodwaters propagated in a south–north direction,and most of the northern areas of the city are at risk of inundation under these scenarios.展开更多
Extreme value analysis is an indispensable method to predict the probability of marine disasters and calculate the design conditions of marine engineering.The rationality of extreme value analysis can be easily affect...Extreme value analysis is an indispensable method to predict the probability of marine disasters and calculate the design conditions of marine engineering.The rationality of extreme value analysis can be easily affected by the lack of sample data.The peaks over threshold(POT)method and compound extreme value distribution(CEVD)theory are effective methods to expand samples,but they still rely on long-term sea state data.To construct a probabilistic model using shortterm sea state data instead of the traditional annual maximum series(AMS),the binomial-bivariate log-normal CEVD(BBLCED)model is established in this thesis.The model not only considers the frequency of the extreme sea state,but it also reflects the correlation between different sea state elements(wave height and wave period)and reduces the requirement for the length of the data series.The model is applied to the calculation of design wave elements in a certain area of the Yellow Sea.The results indicate that the BBLCED model has good stability and fitting effect,which is close to the probability prediction results obtained from the long-term data,and reasonably reflects the probability distribution characteristics of the extreme sea state.The model can provide a reliable basis for coastal engineering design under the condition of a lack of marine data.Hence,it is suitable for extreme value prediction and calculation in the field of disaster prevention and reduction.展开更多
We performed long-term wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002, and then analyzed the regional wave climate. Comparisons between model results and satellite data are generally...We performed long-term wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002, and then analyzed the regional wave climate. Comparisons between model results and satellite data are generally consistent on monthly mean significant wave height. Then we discuss the temporal and spatial characteristics of the climatological monthly mean significant wave heights and mean wave periods. The climatologically spatial patterns are observed as increasing from northwest to southeast and from offshore to deep-water area for both significant wave height and mean wave period, and the patterns are highly related to the wind forcing and local topography. Seasonal variations of wave parameters are also significant. Furthermore, we compute the extreme values of wind and significant wave height using statistical methods. Results reveal the spatial patterns of N-year return significant wave height in the Yellow Sea and the Bohai Sea, and we discuss the relationship between extreme values of significant wave height and wind forcing.展开更多
The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such a...The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such as super typhoons have frequently occurred,which poses a serious challenge to the safety of offshore floating platforms.In view of the lack of safety analysis of wind-wave combined power generation devices in extreme sea conditions at present,this paper takes the OC4-WEC combined with semi-submersible wind turbine(Semi-OC4)and the oscillating buoy wave energy converter as the research object,and establishes a mesoscale WRF-SWANFVCOM(W-S-F)real-time coupling platform based on the model coupling Toolkit(MCT)to analyze the spatial and temporal evolution of wind-wave-current in offshore wind farms during the whole process of super typhoon“Rammasun”transit.Combined with the medium/small scale nested method,the flow field characteristics of OC4-WEC platform are analyzed.The results show that the simulation accuracy of the established W-S-F platform for typhoon track is 42.51%higher than that of the single WRF model.Under the action of typhoon-wave-current,the heave motion amplitude of OC4-WEC platform is reduced by 38.1%,the surge motion amplitude is reduced by 26.7%,and the pitch motion amplitude is reduced by 23.4%.展开更多
Suzhou is one of China's most developed regions, located in the eastern part of the Yangtze Delta. Due to its location and river features, it may at a high risk of flood under the climate change background in the fut...Suzhou is one of China's most developed regions, located in the eastern part of the Yangtze Delta. Due to its location and river features, it may at a high risk of flood under the climate change background in the future. In order to investigate the flood response to the extreme scenario in this region, 1-D hydrodynamic model with real-time operations of sluices and pumps is established. The rain-runoff processes of the urban and rural areas are simulated by two lumped hydrologic models, respectively. Indicators for a quantitative assessment of the flood severity in this region are proposed. The results indicate that the existing flood control system could prevent the Suzhou Downtown from inundation in the future. The difficulty of draining the Taihu Lake floods should be given attention to avoid the flood hazard. The modelling approach based on the in-bank model and the evaluation parameters could be effective for the flood severity estimation in the plain river network catchment. The insights from this study of the possible future extreme flood events may assist the policy making and the flood control planning.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51579232 and 51890913)the Open Funding of State Key Laboratory of Hydraulic Engineering Simulation and Safety (Grant No. HESS-1712)。
文摘In this study, a morphodynamic numerical model is established with the Regional Ocean Modeling System(ROMS)to investigate the transient behavior of sand waves under realistic sea conditions. The simulation of sand wave evolution comprises two steps: 1) a regional-scale model is configured first to simulate the ocean hydrodynamics, i.e., tides and tidal currents, and 2) the transient behavior of sand waves is simulated in a small computational domain under the time-variant currents extracted from the large model. The evolution of sand waves on the continental shelf in the Beibu Gulf is specifically investigated. The numerical results of the two-year evolution of sand waves under normal sea conditions compare well with the field survey data. The transient behavior of sand waves in individual months shows that the sand waves are more stable in April and October than that in other months, which can be selected as the windows for seabed operations. The effects of sediment properties, including settling velocity, critical shear stress and surface erosion rate, on sand wave evolution are also analyzed. Then, the typhoon-induced currents are further superimposed on the tidal currents as the extreme weather conditions. Sand waves with the average wavelength generally have more active behavior than smaller or larger sand waves. The characteristics of the evolution of sand waves in an individual typhoon process are quite different for different hydrodynamic combinations. For the storm conditions, i.e., the real combination and maximum combination cases, the sand waves experience a significant migration together with a damping in height due to the dominant suspended sediment transport. For the mild conditions, i.e., the pure tidal current and minimum combination cases, the sand waves migrate less, but the heights continue growing due to the dominant bedload transport.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.52006148 and 51976131)the Capacity Building Project of Local Institutions of Shanghai“Action Plan for Scientific and Technological”(Grant Nos.19060502200).
文摘Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm.
基金funding from the project “Future flooding risks at the Swedish Coast: Extreme situations in present and future climat”, Ref. No. P02/12 by Lansforsakringsbolagens Forskningsfondthrough the Swedish Civil Contingencies Agency (MSB) through the project “Hazard Support: Risk-based decision support for adaptation to future natural hazards”
文摘Mean sea level rise and climatological wind speed changes occur as part of the ongoing climate change and future projections of both variables are still highly uncertain. Here the Baltic Sea’s response in extreme sea levels to perturbations in mean sea level and wind speeds is investigated in a series of simulations with a newly developed storm surge model based on the nucleus for European modeling of the ocean(NEMO)-Nordic. A simple linear model with only two tunable parameters is found to capture the changes in the return levels extremely well. The response to mean sea level rise is linear and nearly spatially uniform, meaning that a mean sea level rise of 1 m increases the return levels by a equal amount everywhere. The response to wind speed perturbations is more complicated and return levels are found to increase more where they are already high. This behaviour is alarming as it suggests that already flooding prone regions like the Gulf of Finland will be disproportionally adversely affected in a future windier climate.
基金The Ministry of Oceans and Fisheries of Korea-"The Research and Development on Coastal Hydraulic Investigation of Busan New Port"and"Cooperative Project on Korea-China Bilateral Committee on Ocean Science"the Korea Institute of Ocean Science and Technology(KIOST)Project under contract No.PE99325+1 种基金the China-Korea Joint Ocean Research Center(CKJORC)-"Cooperation on the Development of Basic Technologies for the Yellow Sea and East China Sea Operational Oceanographic System(YOOS)"the Nuclear Safety Project of CKJORC and Major Project of KIOST under contract No.PE99304
文摘Record-breaking high waves occurred during the passage of the typhoon Bolaven(1215)(TYB) in the East China Sea(ECS) and Yellow Sea(YS) although its intensity did not reach the level of a super typhoon.Winds and directional wave measurements were made using a range of in-situ instruments mounted on an ocean tower and buoys.In order to understand how such high waves with long duration occurred,analyses have been made through measurement and numerical simulations.TYB winds were generated using the TC96 typhoon wind model with the best track data calibrated with the measurements.And then the wind fields were blended with the reanalyzed synoptic-scale wind fields for a wave model.Wave fields were simulated using WAM4.5 with adjustment of C_d for gust of winds and bottom friction for the study area.Thus the accuracy of simulations is considerably enhanced,and the computed results are also in better agreement with measured data than before.It is found that the extremely high waves evolved as a result of the superposition of distant large swells and high wind seas generated by strong winds from the front/right quadrant of the typhoon track.As the typhoon moved at a speed a little slower than the dominant wave group velocity in a consistent direction for two days,the wave growth was significantly enhanced by strong wind input in an extended fetch and non-linear interaction.
基金financially supported by the Ministry of Science and Technology(863 program)(2006AA09A103-4)the National Natural Science Foundation of China(11232012)the Chinese Academy of Sciences(CAS)knowledge innovation program(KJCXYW-L02)
文摘In offshore engineering design, it is considerably significant to have an adequately accurate estimation of marine environmental parameters, in particular, the extreme wind speed of tropical cyclone (TC) with different return periods to guarantee the safety in projected operating life period. Based on the 71-year (1945-2015) TC data in the Northwest Pacific (NWP) by the Joint Typhoon Warning Center (JTWC) of US, a notable growth of the TC intensity is observed in the context of climate change. The fact implies that the traditional stationary model might be incapable of predicting parameters in the extreme events. Therefore, a non-stationary model is proposed in this study to estimate extreme wind speed in the South China Sea (SCS) and NWP. We find that the extreme wind speeds of different return periods exhibit an evident enhancement trend, for instance, the extreme wind speeds with different return periods by non- stationary model are 4.1%-4.4% higher than stationary ones in SCS. Also, the spatial distribution of extreme wind speed in NWP has been examined with the same methodology by dividing the west sea areas of the NWP 0°-45°N, 105°E-130°E into 45 subareas of 5° × 5°, where oil and gas resources are abundant. Similarly, remarkable spacial in-homogeneity in the extreme wind speed is seen in this area: the extreme wind speed with 50-year return period in the subarea (15°N-20°N, 115°E-120°E) of Zhongsha and Dongsha Islands is 73.8 m/s, while that in the subarea of Yellow Sea (30°N-35°N, 120°E-125°E) is only 47.1 m/s. As a result, the present study demonstrates that non-stationary and in-homogeneous effects should be taken into consideration in the estimation of extreme wind speed.
基金funded by the National Key Research and Development Program of China(No.2016YFC1401103)Funds for the Central Universities(No.202165003)the Open Fund of Shandong Province Key Laboratory of Ocean Engineering,Ocean University of China(No.kloe201903).
文摘Coastal flooding caused by tropical cyclones has long been a major threat to life,property,and infrastructure in coastal zones.This study assessed the risk of flooding in Chittagong,southeastern Bangladesh,under extreme sea level scenarios caused by high astronomical tides and storm surges.The Jelesnianski typhoon model and the ADvanced CIRCulation hydrodynamic model were used to simulate 91 typhoons that occurred in the Bay of Bengal between 1981 and 2017,and observational data were used for model validation.The inundation model was based on a digital elevation model and a seed spread algorithm,and a geographical information system was used to visualize the flood risk.Under four scenarios,the changes in flood levels caused by sea level rise had no signifi-cant influence on the extent of flooding in Chittagong.At flood levels of 8.82m(50-year storm surge without sea level rise)and 8.89 m(50-year storm surge with sea level rise),the maximum estimated area of inundation was 11.35 km^(2).The western coastal and southeastern river coastal plain areas of Chittagong have the highest risk of inundation due to their low-lying terrain.At flood levels of 9.83m(100-year storm surge without sea level rise)and 9.97m(100-year storm surge with sea level rise),the maximum simulated flood extent was 36.44km^(2).Simulated floodwaters propagated in a south–north direction,and most of the northern areas of the city are at risk of inundation under these scenarios.
文摘Extreme value analysis is an indispensable method to predict the probability of marine disasters and calculate the design conditions of marine engineering.The rationality of extreme value analysis can be easily affected by the lack of sample data.The peaks over threshold(POT)method and compound extreme value distribution(CEVD)theory are effective methods to expand samples,but they still rely on long-term sea state data.To construct a probabilistic model using shortterm sea state data instead of the traditional annual maximum series(AMS),the binomial-bivariate log-normal CEVD(BBLCED)model is established in this thesis.The model not only considers the frequency of the extreme sea state,but it also reflects the correlation between different sea state elements(wave height and wave period)and reduces the requirement for the length of the data series.The model is applied to the calculation of design wave elements in a certain area of the Yellow Sea.The results indicate that the BBLCED model has good stability and fitting effect,which is close to the probability prediction results obtained from the long-term data,and reasonably reflects the probability distribution characteristics of the extreme sea state.The model can provide a reliable basis for coastal engineering design under the condition of a lack of marine data.Hence,it is suitable for extreme value prediction and calculation in the field of disaster prevention and reduction.
基金The National Natural Science Foundation of China under contract Nos 41476021 and 41321004the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010104the project of Indo-Pacific Ocean Environment Variation and Air-sea Interaction under contract No.GASI-IPOVAI-04
文摘We performed long-term wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002, and then analyzed the regional wave climate. Comparisons between model results and satellite data are generally consistent on monthly mean significant wave height. Then we discuss the temporal and spatial characteristics of the climatological monthly mean significant wave heights and mean wave periods. The climatologically spatial patterns are observed as increasing from northwest to southeast and from offshore to deep-water area for both significant wave height and mean wave period, and the patterns are highly related to the wind forcing and local topography. Seasonal variations of wave parameters are also significant. Furthermore, we compute the extreme values of wind and significant wave height using statistical methods. Results reveal the spatial patterns of N-year return significant wave height in the Yellow Sea and the Bohai Sea, and we discuss the relationship between extreme values of significant wave height and wind forcing.
基金jointly funded by the National Key Research and Development Projects(No.2017YFE0132000)the National Natural Science Foundation of China(Nos.5211101879,52078251,52108456)the Natural Science Foundation of Jiangsu Province(Nos.BK20211518,BK20210309)
文摘The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such as super typhoons have frequently occurred,which poses a serious challenge to the safety of offshore floating platforms.In view of the lack of safety analysis of wind-wave combined power generation devices in extreme sea conditions at present,this paper takes the OC4-WEC combined with semi-submersible wind turbine(Semi-OC4)and the oscillating buoy wave energy converter as the research object,and establishes a mesoscale WRF-SWANFVCOM(W-S-F)real-time coupling platform based on the model coupling Toolkit(MCT)to analyze the spatial and temporal evolution of wind-wave-current in offshore wind farms during the whole process of super typhoon“Rammasun”transit.Combined with the medium/small scale nested method,the flow field characteristics of OC4-WEC platform are analyzed.The results show that the simulation accuracy of the established W-S-F platform for typhoon track is 42.51%higher than that of the single WRF model.Under the action of typhoon-wave-current,the heave motion amplitude of OC4-WEC platform is reduced by 38.1%,the surge motion amplitude is reduced by 26.7%,and the pitch motion amplitude is reduced by 23.4%.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFC0405600,2016YFC0401503)the Special Fund for Public Welfare of Water Resources Ministry(Grant No.201501007,201201017)the State Key Pro-gram of National Natural Science of China(Grant No.51239003)
文摘Suzhou is one of China's most developed regions, located in the eastern part of the Yangtze Delta. Due to its location and river features, it may at a high risk of flood under the climate change background in the future. In order to investigate the flood response to the extreme scenario in this region, 1-D hydrodynamic model with real-time operations of sluices and pumps is established. The rain-runoff processes of the urban and rural areas are simulated by two lumped hydrologic models, respectively. Indicators for a quantitative assessment of the flood severity in this region are proposed. The results indicate that the existing flood control system could prevent the Suzhou Downtown from inundation in the future. The difficulty of draining the Taihu Lake floods should be given attention to avoid the flood hazard. The modelling approach based on the in-bank model and the evaluation parameters could be effective for the flood severity estimation in the plain river network catchment. The insights from this study of the possible future extreme flood events may assist the policy making and the flood control planning.