粒子群优化(PSO)算法是一种新兴的群体智能优化技术,由于其原理简单、参数少、效果好等优点已经广泛应用于求解各类复杂优化问题.而影响该算法收敛速度和精度的2个主要因素是粒子个体极值与全局极值的更新方式.通过分析粒子的飞行轨迹...粒子群优化(PSO)算法是一种新兴的群体智能优化技术,由于其原理简单、参数少、效果好等优点已经广泛应用于求解各类复杂优化问题.而影响该算法收敛速度和精度的2个主要因素是粒子个体极值与全局极值的更新方式.通过分析粒子的飞行轨迹和引入广义中心粒子和狭义中心粒子,提出双中心粒子群优化(double center particle swarm optimization,DCPSO)算法,在不增加算法复杂度条件下对粒子的个体极值和全局极值更新方式进行更新,从而改善了算法的收敛速度和精度.采用Rosenbrock和Rastrigrin等6个经典测试函数,按照固定迭达次数和固定时间长度运行2种方式进行测试,验证了新算法的可行性和有效性.展开更多
针对人工鱼群算法的寻优速度慢,后期收敛性差等缺陷提出了一种并行运行方式的改进人工鱼群算法(Improvement Artificial Fish Swarm Algorithm,IAFSA)。进而应用IAFSA算法对BP神经网络初始权值进行寻优,以解决BP网络初始权值选取困难且...针对人工鱼群算法的寻优速度慢,后期收敛性差等缺陷提出了一种并行运行方式的改进人工鱼群算法(Improvement Artificial Fish Swarm Algorithm,IAFSA)。进而应用IAFSA算法对BP神经网络初始权值进行寻优,以解决BP网络初始权值选取困难且优化过程中容易陷入局部极值的问题。最后,将IAFSA-BP网络混合算法应用于PID参数的优化,从而克服了PID控制参数难以整定的难题。通过仿真实验,结果表明:改进的人工鱼群算法寻优速度更快,优化值更加合理。应用IAFSA-BP混合算法得到的PID控制参数使得系统响应更快,稳态误差更小,系统性能得到提升。展开更多
目的 :解决应用服务器出现时间偏差会导致住院患者每日汇总报表数据不一致、护士看不到医生医嘱及患者的次日用药无法领取等隐患问题。方法:通过深入分析和大量模拟实验,提出一种基于网络时间协议(network time protocol,NTP)的时间同...目的 :解决应用服务器出现时间偏差会导致住院患者每日汇总报表数据不一致、护士看不到医生医嘱及患者的次日用药无法领取等隐患问题。方法:通过深入分析和大量模拟实验,提出一种基于网络时间协议(network time protocol,NTP)的时间同步改进技术,即定时更新NTP服务器硬件时间,以防止NTP服务器因故存在的硬件时钟累积误差问题;同时,采用自动校正NTP服务器冷启动后的系统时间,避免线上的客户机与不正确的时间进行同步。结果:在时间同步微调模式下,采用脚本后的改进技术大大缩短了时间同步。观察10 s的偏差同步时间可节省7 h以上,若时间更长(<600 s),则节省时间更多。结论:缩短了在线设备与NTP服务器的同步时间,解决了极端情况下的时间偏差问题。展开更多
文摘粒子群优化(PSO)算法是一种新兴的群体智能优化技术,由于其原理简单、参数少、效果好等优点已经广泛应用于求解各类复杂优化问题.而影响该算法收敛速度和精度的2个主要因素是粒子个体极值与全局极值的更新方式.通过分析粒子的飞行轨迹和引入广义中心粒子和狭义中心粒子,提出双中心粒子群优化(double center particle swarm optimization,DCPSO)算法,在不增加算法复杂度条件下对粒子的个体极值和全局极值更新方式进行更新,从而改善了算法的收敛速度和精度.采用Rosenbrock和Rastrigrin等6个经典测试函数,按照固定迭达次数和固定时间长度运行2种方式进行测试,验证了新算法的可行性和有效性.
文摘针对人工鱼群算法的寻优速度慢,后期收敛性差等缺陷提出了一种并行运行方式的改进人工鱼群算法(Improvement Artificial Fish Swarm Algorithm,IAFSA)。进而应用IAFSA算法对BP神经网络初始权值进行寻优,以解决BP网络初始权值选取困难且优化过程中容易陷入局部极值的问题。最后,将IAFSA-BP网络混合算法应用于PID参数的优化,从而克服了PID控制参数难以整定的难题。通过仿真实验,结果表明:改进的人工鱼群算法寻优速度更快,优化值更加合理。应用IAFSA-BP混合算法得到的PID控制参数使得系统响应更快,稳态误差更小,系统性能得到提升。