期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Finite element analysis and experimental investigation of the hydrostatic extrusion process of deforming two-layer Cu/Al composite
1
作者 张朝晖 王富耻 +2 位作者 孙明燕 杨瑞 李树奎 《Journal of Beijing Institute of Technology》 EI CAS 2013年第4期544-549,共6页
A concave die with an equal-strain contour line was used in the hydrostatic extrusion process to deform the two-layer Cu/A1 composite. The extruding process was simulated using the fi- nite element method (FEM). The... A concave die with an equal-strain contour line was used in the hydrostatic extrusion process to deform the two-layer Cu/A1 composite. The extruding process was simulated using the fi- nite element method (FEM). The effect of the friction coefficients on the relative slippage of the contact surfaces between the internal and external metals was investigated, and the stress distribu- tion in the extruded specimen was studied. The simulation results reveal that the relative slippage de- creases with increasing friction coefficient at the contact surface of the two metals. However, the relative slippage increases rapidly with increasing friction coefficient at the contact surface between the specimen and die. No axial tensile stress appears in the plastic deformation zone near the axis, indicating that the inner fracture will not occur in internal metal in the hydrostatic extrusion process as the concave die with equal-strain contour lines is used. The experimental test reveals that the met- allurgical bond is formed between Cu and A1 when the friction coefficient at the surface between the two metals is 0. 3 and the extrusion ratio is 12. 展开更多
关键词 Cu/A1 layered composite hydrostatic extrugion finite element analysis relative slip-page stress distribution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部