The deformation zone of CONFORM extrusion was divided into primary gripping zone,gripping zone,conical expansion chamber zone,cylindrical zone and sizing zone of die,and corresponding force equilibrium equations were ...The deformation zone of CONFORM extrusion was divided into primary gripping zone,gripping zone,conical expansion chamber zone,cylindrical zone and sizing zone of die,and corresponding force equilibrium equations were established using the Slab method.The deformation force formulae of CONFORM machine at any wrapping angle with an expansion chamber were obtained.Experiment on pure aluminum and Al-5%Ti-1%B alloy was conducted on the CONFORM machine self-designed.The resistance to deformation of Al-5%Ti-1%B alloy at the deformation temperature of 400℃ and the strain rate of 3.07 s-1 was measured to be 50 MPa using Gleeble-1500 thermal simulation machine.The calculation results of deformation forces for CONFORM process with an expansion chamber for pure aluminum and Al-5%Ti-1%B alloy were given.The experimental CONFORM radial force is in agreement with the radial force obtained by theoretical formula.展开更多
To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zo...To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zone, flow dividing zone, welding chamber, and sizing zone, and the corresponding stress formulae in various zones were established using the slab method. The deformation zones of CASTEX groove were divided into liquid and semisolid zone, solid primary gripping zone, and solid gripping zone, and the formulae of pipe extrusion forces were established. Experiments were carried out on the self-designed CASTEX machine to obtain the aluminum pipe and measure its extrusion force using the expansion combination die. The experimental results of radial extrusion force for aluminum pipe are in good agreement with the calculated ones.展开更多
Texture evolution and mechanical anisotropic behavior of an ultrafine-grained(UFG)pure copper tube processed by recently introduced method of hydrostatic tube cyclic expansion extrusion(HTCEE)was investigated.For the ...Texture evolution and mechanical anisotropic behavior of an ultrafine-grained(UFG)pure copper tube processed by recently introduced method of hydrostatic tube cyclic expansion extrusion(HTCEE)was investigated.For the UFG tube,different deformation behavior and a significant anisotropy in tensile properties were recorded along the longitudinal and peripheral directions.The HTCEE process increased the yield strength and the ultimate strength in the axial direction by 3.6 and 1.67 times,respectively.Also,this process increased the yield strength and the ultimate strength in the peripheral direction by 1.15 and 1.12 times,respectively.The ratio of ultimate tensile strength in the peripheral direction to that in the axial direction,as a criterion for mechanical anisotropy,are 1.7 and 1.16 for the as-annealed coarse-grained and the HTCEE processed UFG tube,respectively.The results are indicative of a reducing effect of the HTCEE process on the mechanical anisotropy.Besides,after HTCEE process,a low loss of ductility was observed in both directions,which is another advantage of HTCEE process.Hardness measurements revealed a slight increment of hardness values in the peripheral direction,which is in agreement with the trend of tensile tests.Texture analysis was conducted in order to determine the oriental distribution of the grains.The obtained{111}pole figures demonstrate the texture evolution and reaffirm the anisotropy observed in mechanical properties.Scanning electron microscopy micrographs showed that different modes of fracture occurred after tensile testing in the two orthogonal directions.展开更多
Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HC...Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene(LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process,AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively.Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications.展开更多
The microstructure,texture evolution and mechanical properties of AZ31 magnesium alloy were investigated during the cyclic expansion extrusion with the asymmetrical extrusion cavity(CEE-AEC)process.The results show th...The microstructure,texture evolution and mechanical properties of AZ31 magnesium alloy were investigated during the cyclic expansion extrusion with the asymmetrical extrusion cavity(CEE-AEC)process.The results show that continuous dynamic recrystallization(CDRX)and discontinuous dynamic recrystallization(DDRX)occur during the CEE-AEC process.After 3 passes,the microstructures of the deformed samples are refined,and the average grain size of the alloys in asymmetrical cavity region is 6.9μm.The maximum intensities of the basal textures increase with the increase in the number of passes,and the basal textures are deflected during the deformation process.The basal texture of the alloys in asymmetrical cavity region is tilted by approximately±45°from the normal direction(ND)to the extrusion direction(ED).Grain refinement strengthening and texture deflection significantly improve the comprehensive mechanical properties of the deformed alloys.After 3 passes,tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation-to-failure of the alloy in the asymmetric cavity region are 146 MPa,230 MPa and 29.7%,respectively.展开更多
Equal channel angular expansion extrusion with spherical cavity(ECAEE-SC)was introduced as a novel severe plastic deformation(SPD)technique,which is capable of imposing large plastic strain and intrinsic back-pressure...Equal channel angular expansion extrusion with spherical cavity(ECAEE-SC)was introduced as a novel severe plastic deformation(SPD)technique,which is capable of imposing large plastic strain and intrinsic back-pressure on the processed billet.The plastic deformation behaviors of commercially pure aluminum during ECAEE-SC process were investigated using finite element analysis DEFORM-3D simulation software.The material flow,the load history,the distribution of effective strain and mean stress in the billet were analyzed in comparison with conventional equal channel angular extrusion(ECAE)process.In addition,single-pass ECAEE-SC was experimentally conducted on commercially pure aluminum at room temperature for validation,and the evolution of microstructure and microhardness of as-processed material was discussed.It was shown that during the process,the material is in the ideal hydrostatic stress state and the load requirement for ECAEE-SC is much more than that for ECAE.After a single-pass ECAEE-SC,an average strain of 3.51 was accumulated in the billet with homogeneous distribution.Moreover,the microstructure was significantly refined and composed of equiaxed ultrafine grains with sub-micron size.Considerable improvement in the average microhardness of aluminum was also found,which was homogenized and increased from HV 36.61 to HV 70.20,denoting 91.75%improvement compared with that of the as-cast billet.展开更多
A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electri...A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.展开更多
In this paper the present authors measured the gas-particle two-phase velocity correlation in sudden expansion gas-particle flows with a phase Doppler particle anemometer (PDPA) and simulated the system behavior by ...In this paper the present authors measured the gas-particle two-phase velocity correlation in sudden expansion gas-particle flows with a phase Doppler particle anemometer (PDPA) and simulated the system behavior by using both a Reynolds-averaged Navier-Stokes (RANS) model and a large-eddy simulation (LES). The results of the measurements yield the axial and radial time-averaged velocities as well as the fluctuation velocities of gas and three particle-size groups (30μm, 50μm, and 95μm) and the gasparticle velocity correlation for 30μm and 50μm particles. From the measurements, theoretical analysis, and simulation, it is found that the two-phase velocity correlation of sudden-expansion flows, like that of jet flows, is less than the gas and particle Reynolds stresses. What distinguishes the two-phase velocity correlations of sudden-expansion flow from those of jet and channel flows is the absence of a clear relationship between the two-phase velocity correlation and particle size in sudden-expansion flows. The measurements, theoretical analysis, and numerical simulation all lead to the above-stated conclusions. Quantitatively, the results of the LES are better than those of the RANS model.展开更多
The thermal expansion behavior of La1-xSrxMn1-yCoyO3-δ (x=0.2-0.4, y=0.1-0.3) perovskites in air has been investigated. The average linear thermal expansion coefficients increased with increasing Sr content up to 40 ...The thermal expansion behavior of La1-xSrxMn1-yCoyO3-δ (x=0.2-0.4, y=0.1-0.3) perovskites in air has been investigated. The average linear thermal expansion coefficients increased with increasing Sr content up to 40 mole fraction or Co content up to 30 mole fraction. The expansion is generally attributed to an increase in the average cation radius as some of the cations in the perovskite are reduced in valence when oxygen ions are removed from the structure.展开更多
Poly(1,1,2,2- tetrahydroperfluorodecyl acrylate) (poly (TA-N)) was synthesized in laboratory. The resulting morphology of rapid expansion of supercritical solution (RESS) sprays of poly(TA - N) was investigated. At ap...Poly(1,1,2,2- tetrahydroperfluorodecyl acrylate) (poly (TA-N)) was synthesized in laboratory. The resulting morphology of rapid expansion of supercritical solution (RESS) sprays of poly(TA - N) was investigated. At apre - expansion temperature of 45℃), amorphous polymer was formed. At temperature around 60 ℃ to 80 ℃ , fibers were formed. Increase of temperature increasesparticle size slightly. At temperature of 105℃ , most of particles are spheres. The RESS is an attractive process. To apply the polymers desired for coating applications in an organic solvent - free process that is economically viable , and it will have implications for pollution prevention during polymer film展开更多
The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing...The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing are investigated by using X-ray diffractometry (XRD) , scanning electron microsopy (SEM) and energy dis- persive spectroscopy (EDS). Moreover, the microhardness of the substrate and the coating are investigated using Vickers mierohardness tester, the friction and wear behaviors of the substrate and the coating are investigated by using a block-on-ring tribometer under dry sliding conditions with the load of 245 N. The results show that both γ-Al2O3 and α-Al2O3 phases are observed in the as-sprayed coatings, the mian phase is γ-Al2O3. There are white particulates Al2O3 on its surface. The Al2O3-13 wt. % TiO2 coating possesses higher mierohardness which is about 1018HV and 1.6 times that of the substrate. The wear performance of coating is better than that of the substrate. In a practical application, the life of the extrusion wheel which is plasma sprayed Al2O3-13 wt. % TiO2 coating on the surface is 1.2 times that of the conventional extrusion wheel, and the life is about 330 h.展开更多
In the present work,a double-pass continuous expansion extrusion forming(CEEF) process was proposed for an Al-Mg-Si alloy,in which the diameter of rods was gradually expanded.The microstructural evolution,mechanical p...In the present work,a double-pass continuous expansion extrusion forming(CEEF) process was proposed for an Al-Mg-Si alloy,in which the diameter of rods was gradually expanded.The microstructural evolution,mechanical properties and deformation characteristics were investigated by utilizing microstructural observations,mechanical testing and a finite element method coupled with a cellular automata model.The results showed that the strength and ductility of the double-pass CEEF processed Al-Mg-Si alloys were improved synchronously,especially in artificially aged alloys.The grain size of the processed Al-Mg-Si alloy rods was refined remarkably by continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX),and the homogeneity of microstructure was gradually improved with increasing number of processing passes.The artificially aged alloy processed with double-pass CEEF and water quenching contained fine(sub)grains and high-density dislocations,which resulted in more needle-shaped β" precipitates and a larger precipitate aspect ratio than the as-received and air-cooled CEEF alloys owing to the different precipitation kinetics.The severe cumulate strain and microshear bands were found to accelerate CDRX and GDRX for grain refinement between adjacent positions of the parabolic metal flow due to the special temperature characteristics and la rge shear straining during the CEEF process.展开更多
In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation...In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation of the mechanic and electric fields as well as the Bloch-Floquet theorem. The band structures of both the in-plane and anti-plane modes are calculated for a rectangular lattice by the planewave expansion method. The effects of the lattice constant ratio and the piezoelectricity with different filling fractions are analyzed. The results show that the largest gap width is not always obtained for a square lattice. In some situations, a rectangular lattice may generate larger gaps. The band gap characteristics are influenced obviously by the piezoelectricity with the larger lattice constant ratios and the filling fractions.展开更多
基金Projects(51034002,50974038,50274020) supported by the National Natural Science Foundation of China
文摘The deformation zone of CONFORM extrusion was divided into primary gripping zone,gripping zone,conical expansion chamber zone,cylindrical zone and sizing zone of die,and corresponding force equilibrium equations were established using the Slab method.The deformation force formulae of CONFORM machine at any wrapping angle with an expansion chamber were obtained.Experiment on pure aluminum and Al-5%Ti-1%B alloy was conducted on the CONFORM machine self-designed.The resistance to deformation of Al-5%Ti-1%B alloy at the deformation temperature of 400℃ and the strain rate of 3.07 s-1 was measured to be 50 MPa using Gleeble-1500 thermal simulation machine.The calculation results of deformation forces for CONFORM process with an expansion chamber for pure aluminum and Al-5%Ti-1%B alloy were given.The experimental CONFORM radial force is in agreement with the radial force obtained by theoretical formula.
基金Projects(51334006,50274020)supported by the National Natural Science Foundation of China
文摘To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zone, flow dividing zone, welding chamber, and sizing zone, and the corresponding stress formulae in various zones were established using the slab method. The deformation zones of CASTEX groove were divided into liquid and semisolid zone, solid primary gripping zone, and solid gripping zone, and the formulae of pipe extrusion forces were established. Experiments were carried out on the self-designed CASTEX machine to obtain the aluminum pipe and measure its extrusion force using the expansion combination die. The experimental results of radial extrusion force for aluminum pipe are in good agreement with the calculated ones.
文摘Texture evolution and mechanical anisotropic behavior of an ultrafine-grained(UFG)pure copper tube processed by recently introduced method of hydrostatic tube cyclic expansion extrusion(HTCEE)was investigated.For the UFG tube,different deformation behavior and a significant anisotropy in tensile properties were recorded along the longitudinal and peripheral directions.The HTCEE process increased the yield strength and the ultimate strength in the axial direction by 3.6 and 1.67 times,respectively.Also,this process increased the yield strength and the ultimate strength in the peripheral direction by 1.15 and 1.12 times,respectively.The ratio of ultimate tensile strength in the peripheral direction to that in the axial direction,as a criterion for mechanical anisotropy,are 1.7 and 1.16 for the as-annealed coarse-grained and the HTCEE processed UFG tube,respectively.The results are indicative of a reducing effect of the HTCEE process on the mechanical anisotropy.Besides,after HTCEE process,a low loss of ductility was observed in both directions,which is another advantage of HTCEE process.Hardness measurements revealed a slight increment of hardness values in the peripheral direction,which is in agreement with the trend of tensile tests.Texture analysis was conducted in order to determine the oriental distribution of the grains.The obtained{111}pole figures demonstrate the texture evolution and reaffirm the anisotropy observed in mechanical properties.Scanning electron microscopy micrographs showed that different modes of fracture occurred after tensile testing in the two orthogonal directions.
基金This work was financially supported by the Iran National Science Foundation(No.96000854).
文摘Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene(LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process,AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively.Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications.
基金financial supports from International Science and Technology Cooperation Program of Shanxi Province,China(No.201603D421024)Shanxi Scholarship Council of China(No.2017-095)。
文摘The microstructure,texture evolution and mechanical properties of AZ31 magnesium alloy were investigated during the cyclic expansion extrusion with the asymmetrical extrusion cavity(CEE-AEC)process.The results show that continuous dynamic recrystallization(CDRX)and discontinuous dynamic recrystallization(DDRX)occur during the CEE-AEC process.After 3 passes,the microstructures of the deformed samples are refined,and the average grain size of the alloys in asymmetrical cavity region is 6.9μm.The maximum intensities of the basal textures increase with the increase in the number of passes,and the basal textures are deflected during the deformation process.The basal texture of the alloys in asymmetrical cavity region is tilted by approximately±45°from the normal direction(ND)to the extrusion direction(ED).Grain refinement strengthening and texture deflection significantly improve the comprehensive mechanical properties of the deformed alloys.After 3 passes,tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation-to-failure of the alloy in the asymmetric cavity region are 146 MPa,230 MPa and 29.7%,respectively.
基金Project(51905462)supported by the National Natural Science Foundation of ChinaProject(BK20200297)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(GDZB-127)supported by Jiangsu Provincial“Six Talent Peaks”Program,ChinaProject(2018202)supported by the“Youth Science and Technology Talents'Sponsored Program of Jiangsu Science and Technology Association,China。
文摘Equal channel angular expansion extrusion with spherical cavity(ECAEE-SC)was introduced as a novel severe plastic deformation(SPD)technique,which is capable of imposing large plastic strain and intrinsic back-pressure on the processed billet.The plastic deformation behaviors of commercially pure aluminum during ECAEE-SC process were investigated using finite element analysis DEFORM-3D simulation software.The material flow,the load history,the distribution of effective strain and mean stress in the billet were analyzed in comparison with conventional equal channel angular extrusion(ECAE)process.In addition,single-pass ECAEE-SC was experimentally conducted on commercially pure aluminum at room temperature for validation,and the evolution of microstructure and microhardness of as-processed material was discussed.It was shown that during the process,the material is in the ideal hydrostatic stress state and the load requirement for ECAEE-SC is much more than that for ECAE.After a single-pass ECAEE-SC,an average strain of 3.51 was accumulated in the billet with homogeneous distribution.Moreover,the microstructure was significantly refined and composed of equiaxed ultrafine grains with sub-micron size.Considerable improvement in the average microhardness of aluminum was also found,which was homogenized and increased from HV 36.61 to HV 70.20,denoting 91.75%improvement compared with that of the as-cast billet.
基金Project(20130161110007) supported by the Doctoral Program of Higher Education of China
文摘A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.
基金supported by the National Natural Science Foundation of China (50606026 and 50736006)
文摘In this paper the present authors measured the gas-particle two-phase velocity correlation in sudden expansion gas-particle flows with a phase Doppler particle anemometer (PDPA) and simulated the system behavior by using both a Reynolds-averaged Navier-Stokes (RANS) model and a large-eddy simulation (LES). The results of the measurements yield the axial and radial time-averaged velocities as well as the fluctuation velocities of gas and three particle-size groups (30μm, 50μm, and 95μm) and the gasparticle velocity correlation for 30μm and 50μm particles. From the measurements, theoretical analysis, and simulation, it is found that the two-phase velocity correlation of sudden-expansion flows, like that of jet flows, is less than the gas and particle Reynolds stresses. What distinguishes the two-phase velocity correlations of sudden-expansion flow from those of jet and channel flows is the absence of a clear relationship between the two-phase velocity correlation and particle size in sudden-expansion flows. The measurements, theoretical analysis, and numerical simulation all lead to the above-stated conclusions. Quantitatively, the results of the LES are better than those of the RANS model.
基金This work was supported by the National Naturel Science Foundation of China(No.600740i9).
文摘The thermal expansion behavior of La1-xSrxMn1-yCoyO3-δ (x=0.2-0.4, y=0.1-0.3) perovskites in air has been investigated. The average linear thermal expansion coefficients increased with increasing Sr content up to 40 mole fraction or Co content up to 30 mole fraction. The expansion is generally attributed to an increase in the average cation radius as some of the cations in the perovskite are reduced in valence when oxygen ions are removed from the structure.
文摘Poly(1,1,2,2- tetrahydroperfluorodecyl acrylate) (poly (TA-N)) was synthesized in laboratory. The resulting morphology of rapid expansion of supercritical solution (RESS) sprays of poly(TA - N) was investigated. At apre - expansion temperature of 45℃), amorphous polymer was formed. At temperature around 60 ℃ to 80 ℃ , fibers were formed. Increase of temperature increasesparticle size slightly. At temperature of 105℃ , most of particles are spheres. The RESS is an attractive process. To apply the polymers desired for coating applications in an organic solvent - free process that is economically viable , and it will have implications for pollution prevention during polymer film
文摘The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing are investigated by using X-ray diffractometry (XRD) , scanning electron microsopy (SEM) and energy dis- persive spectroscopy (EDS). Moreover, the microhardness of the substrate and the coating are investigated using Vickers mierohardness tester, the friction and wear behaviors of the substrate and the coating are investigated by using a block-on-ring tribometer under dry sliding conditions with the load of 245 N. The results show that both γ-Al2O3 and α-Al2O3 phases are observed in the as-sprayed coatings, the mian phase is γ-Al2O3. There are white particulates Al2O3 on its surface. The Al2O3-13 wt. % TiO2 coating possesses higher mierohardness which is about 1018HV and 1.6 times that of the substrate. The wear performance of coating is better than that of the substrate. In a practical application, the life of the extrusion wheel which is plasma sprayed Al2O3-13 wt. % TiO2 coating on the surface is 1.2 times that of the conventional extrusion wheel, and the life is about 330 h.
基金supported by the National Natural Science Foundation of China(51774124,51671083,52074114)Hunan Provincial Natural Science Foundation of China(2019JJ40017)+1 种基金Key Technologies R&D in Strategic Emerging Industries and Transformation in High-tech Achievements Program of Hunan Province(2019GK4045)Graduate Training and Innovation Practice Base of Hunan Province。
文摘In the present work,a double-pass continuous expansion extrusion forming(CEEF) process was proposed for an Al-Mg-Si alloy,in which the diameter of rods was gradually expanded.The microstructural evolution,mechanical properties and deformation characteristics were investigated by utilizing microstructural observations,mechanical testing and a finite element method coupled with a cellular automata model.The results showed that the strength and ductility of the double-pass CEEF processed Al-Mg-Si alloys were improved synchronously,especially in artificially aged alloys.The grain size of the processed Al-Mg-Si alloy rods was refined remarkably by continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX),and the homogeneity of microstructure was gradually improved with increasing number of processing passes.The artificially aged alloy processed with double-pass CEEF and water quenching contained fine(sub)grains and high-density dislocations,which resulted in more needle-shaped β" precipitates and a larger precipitate aspect ratio than the as-received and air-cooled CEEF alloys owing to the different precipitation kinetics.The severe cumulate strain and microshear bands were found to accelerate CDRX and GDRX for grain refinement between adjacent positions of the parabolic metal flow due to the special temperature characteristics and la rge shear straining during the CEEF process.
基金the National Natural Science Foundation of China (10672017 and 10632020)
文摘In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation of the mechanic and electric fields as well as the Bloch-Floquet theorem. The band structures of both the in-plane and anti-plane modes are calculated for a rectangular lattice by the planewave expansion method. The effects of the lattice constant ratio and the piezoelectricity with different filling fractions are analyzed. The results show that the largest gap width is not always obtained for a square lattice. In some situations, a rectangular lattice may generate larger gaps. The band gap characteristics are influenced obviously by the piezoelectricity with the larger lattice constant ratios and the filling fractions.