期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Fabrication and properties of binder for powder extrusion molding 被引量:1
1
作者 ZHOUJicheng HUANGBaiyun 《Rare Metals》 SCIE EI CAS CSCD 2003年第2期98-102,共5页
By optimizing formulation and fabrication methods, a new binder forplasticizing powder extrusion molding of hard metal, with excellent integrated properties anduniform distribution characters, has been developed. Ther... By optimizing formulation and fabrication methods, a new binder forplasticizing powder extrusion molding of hard metal, with excellent integrated properties anduniform distribution characters, has been developed. Thermal debonding mechanism and the extrudingtheological behaviours have been studied. The technology of fabrication of binder and thermaldebonding process have also been investigated. Using the novel binder, the hard-metalextrusion-molding rods with diameter up to 25mm, have been manufactured. 展开更多
关键词 powder metallurgy BINDER powder extrusion molding thermal debonding rheology hard metal
下载PDF
Powder Extrusion Molding of Nanocrystalline WC-10Co Composite Cemented Carbide 被引量:1
2
作者 史晓亮 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第1期46-48,共3页
The rods that were shaped from nanocrystalline WC- 10.21 Co-0.42 VC/ Cr3 C2 ( wt% ) composite powders by using powder extrusion molding (PEM) were investigated. The nanocrystalline WC- 10.21 Co- 0. 42 VC/ Cr3 C2 ... The rods that were shaped from nanocrystalline WC- 10.21 Co-0.42 VC/ Cr3 C2 ( wt% ) composite powders by using powder extrusion molding (PEM) were investigated. The nanocrystalline WC- 10.21 Co- 0. 42 VC/ Cr3 C2 ( wt% ) composite powders were prepared by the spray thermal decomposition-continuous reduction and carburization technology. In order to improve the properties of rods shaped by using powder extrusion molding, the cold isostatic pressing (CIP) technology was used before or after debinding. Specimens were siutered by vacuum siutering and hot isostatic pressing (HIP). The density, Rockwell A hardness, magnetic coercivity , and magnetic saturation induction of siutered specimen were measured. The microstructure of the green bodies and the siutered specimens was studied by scanning electron microscopy (SEM). Results show that the rod formed by using powder extrusion molding after debinding and followed by cold isostatic pressing can be siutered to 99.5% density of composite cemented carbide rods with an average grain size of about 200- 300 nm, magnetic coercivity of 30.4 KA / m, Rockwell A hardness of 92.6 and magnetic saturation induction of 85% . Superfine WC- 10 Co cemented carbide rods with excellent properties were obtained. 展开更多
关键词 powder extrusion molding cold isostatic pressing NANOCRYSTALLINE WC- 10.21 Co-0. 42 VC/ Cr3 C2 wt% composite powders
下载PDF
The Effect of Nitrogen Gas Cooling Which Is Used in Aluminium Extrusion Mold on Production Efficiency 被引量:1
3
作者 Merve Ozcan Cemal Ozsut +1 位作者 Oguzhan Deveci Gulbahar Bentesen 《Open Journal of Applied Sciences》 2021年第4期414-421,共8页
It is aimed to investigate the efficiency of nitrogen gas cooling which is used in aluminium extrusion mold in this study. The exit temperature of extrusion profile increases depending on heat generated by friction an... It is aimed to investigate the efficiency of nitrogen gas cooling which is used in aluminium extrusion mold in this study. The exit temperature of extrusion profile increases depending on heat generated by friction and forming. This situation can cause to surface defects such as hot cracks and grain thickening after extrusion process. Cooling of the mold has a critical role in terms of dissipating heat close to the forming zone. Local internal cooling experiments were performed in the hot aluminium extrusion mold within the scope of this study. It has been obtained that exit temperature of the aluminium extrusion profile can be significantly reduced in experimental results. Also it was found that the reduction of press time (s) and increase of press speed (mm/s). This paper focuses the effect of nitrogen gas cooling on extrusion mold for process efficiency. The extrusion parameters were performed for comparative analysis. Its obtained that process ensures efficiency. 展开更多
关键词 Aluminium extrusion mold Cooling System Production Efficiency
下载PDF
Molding of polyether ether ketone(PEEK)and its composites:a review
4
作者 Zhengchuan GUO Junjie HE +4 位作者 Ruoxiang GAO Yifeng PAN Chengqian ZHANG Jianzhong FU Peng ZHAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第10期788-823,共36页
Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistanc... Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistance,and biocompatibility.PEEK and its composites have found extensive applications across various fields,including machinery,aerospace,military equipment,electronics,and biomedicine,positioning themselves as promising substitutes for traditional metal structures.Nevertheless,achieving optimal performance and functional molding of PEEK and its composites presents a formidable challenge,given their inherent characteristics,such as semi-crystallinity,high melting temperature,heightened viscosity,low dielectric coefficient,and hydrophobic properties.In this paper,we present a comprehensive review of the molding methods and processes of PEEK and its composites,including extrusion molding,hot compression molding,injection molding,and 3D printing.We also introduce typical innovative applications within the fields of mechanics,electricity,and biomedicine while elucidating methodologies that leverage the distinctive advantages of PEEK and its composites.Additionally,we summarize research findings related to manipulating the properties of PEEK and its composites through the optimization of machine parameters,process variables,and material structural adjustments.Finally,we contemplate the prevailing development trends and outline prospective avenues for further research in the advancement and molding of PEEK and its composites. 展开更多
关键词 Polyether ether ketone(PEEK) COMPOSITES extrusion molding Hot compression molding Injection molding 3D printing
原文传递
Radially loading rotary extrusion for manufacturing large-size conical cylinders with inner transverse high ribs 被引量:1
5
作者 Zhe CHEN Zhimin ZHANG +1 位作者 Jie ZHENG Yong XUE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期582-594,共13页
The Large-size Conical Cylinders with Inner Transverse High Ribs(LCCWITHR) can reduce the weight of the parts while maintaining high rigidity and strength. Radially Loading Rotary Extrusion(RLRE) forming technology ca... The Large-size Conical Cylinders with Inner Transverse High Ribs(LCCWITHR) can reduce the weight of the parts while maintaining high rigidity and strength. Radially Loading Rotary Extrusion(RLRE) forming technology can achieve integral forming of LCCWITHR through the synergy of radial and rotary movements of dies. The flow law of the material during the forming process is the key to forming large-size inner ribs. At present, there is no unified understanding of the metal flow law of RLRE forming technology. An analytical expression was derived to predict the Radial Direction(RD) deformation loads. The FE simulation and process experiment were carried out to investigate the effects of the inclination angle, thickness factor and transition arc radius of the split top dies on the spacing of the metal diversion plane, the metal flow velocity of the rib area and the final radius of the inner rib. The influence of the split top dies loading distance and the bottom die rotation angle of each pass on the inner radius of the inner rib was verified. And the optimal combination of dies shape parameters and loading paths which can make the metal flow orderly was obtained: the inclination angle is 140°, the thickness factor is 3.64, the transition arc radius is 16 mm;the top dies loading distance is 15 mm, the bottom die rotation angle is 45°.The FE simulation results have been found to be in close agreement with physics experiment.The research results reveal the metal flow law of rib growth in the RLRE of LCCWITHR, which lays a theoretical foundation for subsequent thorough research and process optimization. 展开更多
关键词 extrusion molding Rotary extrusion Radially loading Inner transverse rib Metal flow law Conical cylinder
原文传递
Development of lunar regolith-based composite for in-situ 3D printing via high-pressure extrusion system 被引量:1
6
作者 Hua ZHAO Jihong ZHU +2 位作者 Shangqin YUAN Shaoying LI Weihong ZHANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第2期253-266,共14页
To fully utilize the in-situ resources on the moon to facilitate the establishment of a lunar habitat is significant to realize the long-term residence of mankind on the moon and the deep space exploration in the futu... To fully utilize the in-situ resources on the moon to facilitate the establishment of a lunar habitat is significant to realize the long-term residence of mankind on the moon and the deep space exploration in the future.Thus,intensive research works have been conducted to develop types of 3D printing approach to adapt to the extreme environment and utilize the lunar regolith for in-situ construction.However,the in-situ 3D printing using raw lunar regolith consumes extremely high energy and time.In this work,we proposed a cost-effective melting extrusion system for lunar regolith-based composite printing,and engineering thermoplastic powders are employed as a bonding agent for lunar regolith composite.The high-performance nylon and lunar regolith are uniformly pre-mixed in powder form with different weight fractions.The high-pressure extrusion system is helpful to enhance the interface affinity of polymer binders with lunar regolith as well as maximize the loading ratio of in-situ resources of lunar regolith.Mechanical properties such as tensile strength,elastic modulus,and Poisson’s ratio of the printed specimens were evaluated systematically.Especially,the impact performance was emphasized to improve the resistance of the meteorite impact on the moon.The maximum tensile strength and impact toughness reach 36.2 MPa and 5.15 kJ/m2,respectively.Highpressure melt extrusion for lunar regolith composite can increase the effective loading fraction up to 80 wt.% and relatively easily adapt to extreme conditions for in-situ manufacturing. 展开更多
关键词 in-situ resource utilization melt extrusion molding lunar regolith-based composites mechanical properties additive manufacturing
原文传递
Thermal debinding dynamics of novel binder system
7
作者 周继承 黄伯云 +1 位作者 张传福 刘业翔 《中国有色金属学会会刊:英文版》 CSCD 2001年第4期517-520,共4页
The thermal debinding dynamics of newly developed binders for cemented carbides extrusion molding was studied. It is shown that the thermal debinding processes can be divided into two stages: low temperature region, i... The thermal debinding dynamics of newly developed binders for cemented carbides extrusion molding was studied. It is shown that the thermal debinding processes can be divided into two stages: low temperature region, in which the low molecular mass components (LMMCs) are removed; and high temperature region, in which the polymer components are removed. The rate of thermal debinding is controlled by diffusion mechanism. The thermal debinding activation energies were solved out by differential method and integral method. The results show that the addition of other components acted as a catalyzer can effectively decrease the activation energy of thermal debinding processes. 展开更多
关键词 plasticizing powder extrusion molding BINDER thermal debinding mechanism non isothermal dynamics
下载PDF
Effect of Thermal Shrinkage of Extruded Sheet on Mouthguard Thickness: Influence of Model Undercut
8
作者 Mutsumi Takahashi Yogetsu Bando 《Materials Sciences and Applications》 2022年第1期54-62,共9页
The effectiveness and safety of the mouthguard are greatly affected by its thickness. The aim of this study was to investigate the effect of thermal shrinkage of the extruded sheet on the mouthguard thickness dependin... The effectiveness and safety of the mouthguard are greatly affected by its thickness. The aim of this study was to investigate the effect of thermal shrinkage of the extruded sheet on the mouthguard thickness depending on the amount of undercut of the model. Mouthguard sheet was used a 4.0 mm thick ethylene-vinyl acetate resin manufactured by extrusion molding. The sheets were placed in the vacuum forming machine with the sheet extrusion direction either vertical (condition V) or parallel (condition P) to the model’s centerline. The working models were three hard plaster models trimmed so that the angles of the anterior teeth to the model base were 90?, 100?, and 110? (Models A, B, and C). The sheet was softened until it sagged 15 mm, and then suction was continued for 30 s. Measurement points of the mouthguard were the incisal portion (incisal edge and labial surface) and molar portion (cusp and buccal surface). The differences in the reduction rate of the thickness due to model form and extrusion direction were analyzed using two-way ANOVA and Bonferroni’s multiple comparison tests. Differences in thickness depending on the extrusion direction of the sheet were observed in Models B and C on the labial surface and in all models on the buccal surface, and the thicknesses obtained under condition P were significantly thinner than those obtained under condition V. The thicknesses of the incisal edge and the cusp were not affected by the extrusion direction. The result of this study was suggested that the labial and buccal thickness of the mouthguard was secured by placing the sheet in the extrusion direction vertical to the model’s centerline. Furthermore, it was clarified that the presence of the undercut of the model tends to increase the influence of the extrusion direction of the sheet on the thickness of the mouthguard. 展开更多
关键词 MOUTHGUARD extrusion molding Thickness Model Angle UNDERCUT
下载PDF
One-step and Continuous Fabrication of Coaxial Piezoelectric Fiber for Sensing Application
9
作者 Shuai-Shuai Gui Bing-Xu Da +4 位作者 Fei Peng Guo-Qiang Zheng Kun Dai Chun-Tai Liu Chang-Yu Shen 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第11期1778-1785,I0009,共9页
Although there has been rapid advancement in piezoelectric sensors,challenges still remain in developing wearable piezoelectric sensors by a one-step,continuous and environmentally friendly method.In this work,a 1D fl... Although there has been rapid advancement in piezoelectric sensors,challenges still remain in developing wearable piezoelectric sensors by a one-step,continuous and environmentally friendly method.In this work,a 1D flexible coaxial piezoelectric fiber was directly fabricated by melt extrusion molding,whose core and sheath layer are respectively slender steel wire(i.e.,electrode)and PVDF(i.e.,piezoelectric layer).Moreover,such 1D flexible coaxial piezoelectric fiber possesses short response time and high sensitivity,which can be used as a selfpowered sensor for bending and vibration sensing.More interestingly,such 1D flexible coaxial piezoelectric fiber(1D-PFs)can be further endowed with 3D helical structure.Moreover,a wearable and washable motion monitoring system can be constructed via braiding such 3D helical piezoelectric fiber(3D-PF)into commercial textiles.This work paves a new way for developing 1D and 3D piezoelectric fibers through a one-step,continuous and environmentally friendly method,showing potential applications in the field of sensing and wearable electronics. 展开更多
关键词 Coaxial piezoelectric fiber Melt extrusion molding Bending and vibration sensing Motion monitoring system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部