在简单回顾奇异值法压制随机噪音的基础上,提出了基于奇异值分解的f x y域滤波方法。该方法是一种三维去噪方法,它不需求取同相轴的倾角就可以去除倾斜同相轴的随机噪音,同时还可以较好地保持地震信号的振幅。经理论模型试算表明,该方...在简单回顾奇异值法压制随机噪音的基础上,提出了基于奇异值分解的f x y域滤波方法。该方法是一种三维去噪方法,它不需求取同相轴的倾角就可以去除倾斜同相轴的随机噪音,同时还可以较好地保持地震信号的振幅。经理论模型试算表明,该方法运算速度快,效果明显,是一种可行的去噪方法。展开更多
针对传统F-X域预测滤波去除地震资料随机噪声耗时巨大的问题,提出了基于统一计算设备架构(CUDA)的并行算法。首先,对算法进行模块化分析以找到算法的计算瓶颈;然后从每个窗口数据计算相关矩阵、求滤波因子、滤波等步骤入手,使用图形处理...针对传统F-X域预测滤波去除地震资料随机噪声耗时巨大的问题,提出了基于统一计算设备架构(CUDA)的并行算法。首先,对算法进行模块化分析以找到算法的计算瓶颈;然后从每个窗口数据计算相关矩阵、求滤波因子、滤波等步骤入手,使用图形处理器(GPU)将滤波过程分解为多个任务并行处理;最后,对算法进行并行实现,并对相邻滤波窗口的数据冗余读取进行优化以提升算法效率。基于NVIDIA Tesla K20c显卡的实验结果表明,在250×250大小工区的地震数据中,所提并行算法较原串行算法在效率上实现了10.9倍的提升,同时能保证工程中要求的计算精度。展开更多
文摘针对传统F-X域预测滤波去除地震资料随机噪声耗时巨大的问题,提出了基于统一计算设备架构(CUDA)的并行算法。首先,对算法进行模块化分析以找到算法的计算瓶颈;然后从每个窗口数据计算相关矩阵、求滤波因子、滤波等步骤入手,使用图形处理器(GPU)将滤波过程分解为多个任务并行处理;最后,对算法进行并行实现,并对相邻滤波窗口的数据冗余读取进行优化以提升算法效率。基于NVIDIA Tesla K20c显卡的实验结果表明,在250×250大小工区的地震数据中,所提并行算法较原串行算法在效率上实现了10.9倍的提升,同时能保证工程中要求的计算精度。