针对传统F-X域预测滤波去除地震资料随机噪声耗时巨大的问题,提出了基于统一计算设备架构(CUDA)的并行算法。首先,对算法进行模块化分析以找到算法的计算瓶颈;然后从每个窗口数据计算相关矩阵、求滤波因子、滤波等步骤入手,使用图形处理...针对传统F-X域预测滤波去除地震资料随机噪声耗时巨大的问题,提出了基于统一计算设备架构(CUDA)的并行算法。首先,对算法进行模块化分析以找到算法的计算瓶颈;然后从每个窗口数据计算相关矩阵、求滤波因子、滤波等步骤入手,使用图形处理器(GPU)将滤波过程分解为多个任务并行处理;最后,对算法进行并行实现,并对相邻滤波窗口的数据冗余读取进行优化以提升算法效率。基于NVIDIA Tesla K20c显卡的实验结果表明,在250×250大小工区的地震数据中,所提并行算法较原串行算法在效率上实现了10.9倍的提升,同时能保证工程中要求的计算精度。展开更多
The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in ...The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.展开更多
文摘针对传统F-X域预测滤波去除地震资料随机噪声耗时巨大的问题,提出了基于统一计算设备架构(CUDA)的并行算法。首先,对算法进行模块化分析以找到算法的计算瓶颈;然后从每个窗口数据计算相关矩阵、求滤波因子、滤波等步骤入手,使用图形处理器(GPU)将滤波过程分解为多个任务并行处理;最后,对算法进行并行实现,并对相邻滤波窗口的数据冗余读取进行优化以提升算法效率。基于NVIDIA Tesla K20c显卡的实验结果表明,在250×250大小工区的地震数据中,所提并行算法较原串行算法在效率上实现了10.9倍的提升,同时能保证工程中要求的计算精度。
基金supported financially by the National Natural Science Foundation(No.41174117)the Major National Science and Technology Projects(No.2011ZX05031–001)
文摘The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.