针对传统F-X域预测滤波去除地震资料随机噪声耗时巨大的问题,提出了基于统一计算设备架构(CUDA)的并行算法。首先,对算法进行模块化分析以找到算法的计算瓶颈;然后从每个窗口数据计算相关矩阵、求滤波因子、滤波等步骤入手,使用图形处理...针对传统F-X域预测滤波去除地震资料随机噪声耗时巨大的问题,提出了基于统一计算设备架构(CUDA)的并行算法。首先,对算法进行模块化分析以找到算法的计算瓶颈;然后从每个窗口数据计算相关矩阵、求滤波因子、滤波等步骤入手,使用图形处理器(GPU)将滤波过程分解为多个任务并行处理;最后,对算法进行并行实现,并对相邻滤波窗口的数据冗余读取进行优化以提升算法效率。基于NVIDIA Tesla K20c显卡的实验结果表明,在250×250大小工区的地震数据中,所提并行算法较原串行算法在效率上实现了10.9倍的提升,同时能保证工程中要求的计算精度。展开更多
文摘针对传统F-X域预测滤波去除地震资料随机噪声耗时巨大的问题,提出了基于统一计算设备架构(CUDA)的并行算法。首先,对算法进行模块化分析以找到算法的计算瓶颈;然后从每个窗口数据计算相关矩阵、求滤波因子、滤波等步骤入手,使用图形处理器(GPU)将滤波过程分解为多个任务并行处理;最后,对算法进行并行实现,并对相邻滤波窗口的数据冗余读取进行优化以提升算法效率。基于NVIDIA Tesla K20c显卡的实验结果表明,在250×250大小工区的地震数据中,所提并行算法较原串行算法在效率上实现了10.9倍的提升,同时能保证工程中要求的计算精度。