期刊文献+
共找到4,534篇文章
< 1 2 227 >
每页显示 20 50 100
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
1
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
下载PDF
Hallmarks of peripheral nerve function in bone regeneration 被引量:5
2
作者 Ranyang Tao Bobin Mi +6 位作者 Yiqiang Hu Sien Lin Yuan Xiong Xuan Lu Adriana C.Panayi Gang Li Guohui Liu 《Bone Research》 SCIE CAS CSCD 2023年第1期47-64,共18页
Skeletal tissue is highly innervated.Although different types of nerves have been recently identified in the bone,the crosstalk between bone and nerves remains unclear.In this review,we outline the role of the periphe... Skeletal tissue is highly innervated.Although different types of nerves have been recently identified in the bone,the crosstalk between bone and nerves remains unclear.In this review,we outline the role of the peripheral nervous system(PNS)in bone regeneration following injury.We first introduce the conserved role of nerves in tissue regeneration in species ranging from amphibians to mammals.We then present the distribution of the PNS in the skeletal system under physiological conditions,fractures,or regeneration.Furthermore,we summarize the ways in which the PNS communicates with bone-lineage cells,the vasculature,and immune cells in the bone microenvironment.Based on this comprehensive and timely review,we conclude that the PNS regulates bone regeneration through neuropeptides or neurotransmitters and cells in the peripheral nerves.An in-depth understanding of the roles of peripheral nerves in bone regeneration will inform the development of new strategies based on bone-nerve crosstalk in promoting bone repair and regeneration. 展开更多
关键词 nerveS REGENERATION function
下载PDF
A hyaluronic acid granular hydrogel nerve guidance conduit promotes regeneration and functional recovery of injured sciatic nerves in rats 被引量:4
3
作者 Jie Yang Chia-Chen Hsu +3 位作者 Ting-Ting Cao Hua Ye Jing Chen Yun-Qing Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期657-663,共7页
A hyaluronic acid granular hydrogel can promote neuronal and astrocyte colony formation and axonal extension in vitro,suggesting that the hydrogel can simulate an extracellular matrix structure to promote neural regen... A hyaluronic acid granular hydrogel can promote neuronal and astrocyte colony formation and axonal extension in vitro,suggesting that the hydrogel can simulate an extracellular matrix structure to promote neural regeneration.However,in vivo experiments have not been conducted.In this study,we transplanted a hyaluronic acid granular hydrogel nerve guidance conduit to repair a 10-mm long sciatic nerve gap.The Basso,Beattie,and Bresnahan locomotor rating scale,sciatic nerve compound muscle action potential recording,Fluoro-Gold retrograde tracing,growth related protein 43/S100 immunofluorescence staining,transmission electron microscopy,gastrocnemius muscle dry/wet weight ratio,and Masson’s trichrome staining results showed that the nerve guidance conduit exhibited similar regeneration of sciatic nerve axons and myelin sheath,and recovery of the electrophysiological function and motor function as autologous nerve transplantation.The conduit results were superior to those of a bulk hydrogel or silicone tube transplant.These findings suggest that tissue-engineered nerve conduits containing hyaluronic acid granular hydrogels effectively promote the morphological and functional recovery of the injured sciatic nerve.The nerve conduits have the potential as a material for repairing peripheral nerve defects. 展开更多
关键词 functional recovery granular hydrogel hyaluronic acid myelin sheath nerve conduit nerve regeneration peripheral nerve regeneration sciatic nerve injury tissue engineering transection injury
下载PDF
Silk-based nerve guidance conduits with macroscopic holes modulate the vascularization of regenerating rat sciatic nerve
4
作者 Carina Hromada Patrick Heimel +10 位作者 Markus Kerbl LászlóGál Sylvia Nürnberger Barbara Schaedl James Ferguson Nicole Swiadek Xavier Monforte Johannes C.Heinzel Antal Nógrádi Andreas H.Teuschl-Woller David Hercher 《Neural Regeneration Research》 SCIE CAS 2025年第6期1789-1800,共12页
Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the ... Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use. 展开更多
关键词 axon regeneration blood vessel functional recovery macroporous nerve lesion peripheral nerve repair sciatic nerve silk-based nerve guidance conduit VASCULARIZATION
下载PDF
Development and Validation of a Deep Learning Predictive Model Combining Clinical and Radiomic Features for Short-Term Postoperative Facial Nerve Function in Acoustic Neuroma Patients 被引量:1
5
作者 Meng-yang WANG Chen-guang JIA +4 位作者 Huan-qing XU Cheng-shi XU Xiang LI Wei WEI Jin-cao CHEN 《Current Medical Science》 SCIE CAS 2023年第2期336-343,共8页
Objective This study aims to construct and validate a predictable deep learning model associated with clinical data and multi-sequence magnetic resonance imaging(MRI)for short-term postoperative facial nerve function ... Objective This study aims to construct and validate a predictable deep learning model associated with clinical data and multi-sequence magnetic resonance imaging(MRI)for short-term postoperative facial nerve function in patients with acoustic neuroma.Methods A total of 110 patients with acoustic neuroma who underwent surgery through the retrosigmoid sinus approach were included.Clinical data and raw features from four MRI sequences(T1-weighted,T2-weighted,T1-weighted contrast enhancement,and T2-weighted-Flair images)were analyzed.Spearman correlation analysis along with least absolute shrinkage and selection operator regression were used to screen combined clinical and radiomic features.Nomogram,machine learning,and convolutional neural network(CNN)models were constructed to predict the prognosis of facial nerve function on the seventh day after surgery.Receiver operating characteristic(ROC)curve and decision curve analysis(DCA)were used to evaluate model performance.A total of 1050 radiomic parameters were extracted,from which 13 radiomic and 3 clinical features were selected.Results The CNN model performed best among all prediction models in the test set with an area under the curve(AUC)of 0.89(95%CI,0.84–0.91).Conclusion CNN modeling that combines clinical and multi-sequence MRI radiomic features provides excellent performance for predicting short-term facial nerve function after surgery in patients with acoustic neuroma.As such,CNN modeling may serve as a potential decision-making tool for neurosurgery. 展开更多
关键词 acoustic neuroma convolutional neural network facial nerve function machine learning multi-sequence magnetic resonance imaging
下载PDF
Functional recovery and muscle atrophy in pre-clinical models of peripheral nerve transection and gap-grafting in mice:effects of 4-aminopyridine
6
作者 Jung Il Lee M A Hassan Talukder +8 位作者 Zara Karuman Anagha A.Gurjar Prem Kumar Govindappa Jagadeeshaprasad M.Guddadarangaiah Kristen M.Manto Grant D.Wandling John P.Hegarty David L.Waning John C.Elfar 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期439-444,共6页
We recently demonstrated a repurposing beneficial effect of 4-aminopyridine(4-AP),a potassium channel blocker,on functional recove ry and muscle atrophy after sciatic nerve crush injury in rodents.However,this effect ... We recently demonstrated a repurposing beneficial effect of 4-aminopyridine(4-AP),a potassium channel blocker,on functional recove ry and muscle atrophy after sciatic nerve crush injury in rodents.However,this effect of 4-AP is unknown in nerve transection,gap,and grafting models.To evaluate and compare the functional recovery,nerve morphology,and muscle atrophy,we used a novel stepwise nerve transection with gluing(STG),as well as 7-mm irreparable nerve gap(G-7/0)and 7-mm isografting in 5-mm gap(G-5/7)models in the absence and presence of 4-AP treatment.Following surgery,sciatic functional index was determined wee kly to evaluate the direct in vivo global motor functional recovery.After 12 weeks,nerves were processed for whole-mount immunofluorescence imaging,and tibialis anterior muscles were harvested for wet weight and quantitative histomorphological analyses for muscle fiber crosssectional area and minimal Feret's diameter.Average post-injury sciatic functional index values in STG and G-5/7 models were significantly greater than those in the G-7/0 model.4-AP did not affect the sciatic functional index recovery in any model.Compared to STG,nerve imaging revealed more misdirected axons and distorted nerve architecture with isografting.While muscle weight,cross-sectional area,and minimal Feret's diameter were significantly smaller in G-7/0 model compared with STG and G-5/7,4-AP treatment significantly increased right TA muscle mass,cross-sectional area,and minimal Feret's diameter in G-7/0 model.These findings demonstrate that functional recovery and muscle atrophy after peripheral nerve injury are directly related to the intervening nerve gap,and 4-AP exerts diffe rential effects on functional recove ry and muscle atrophy. 展开更多
关键词 4-AMINOPYRIDINE functional recovery muscle atrophy nerve gap nerve grafting nerve imaging nerve transection
下载PDF
Nerve function restoration following targeted muscle reinnervation after varying delayed periods
7
作者 Yuanheng Li Jiangping Huang +4 位作者 Yuling Chen Shanshan Zhu Zhen Huang Lin Yang Guanglin Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2762-2766,共5页
Targeted muscle reinnervation has been proposed for reconstruction of neuromuscular function in amputees.However,it is unknown whether performing delayed targeted muscle reinnervation after nerve injury will affect re... Targeted muscle reinnervation has been proposed for reconstruction of neuromuscular function in amputees.However,it is unknown whether performing delayed targeted muscle reinnervation after nerve injury will affect restoration of function.In this rat nerve injury study,the median and musculocutaneous nerves of the forelimb were transected.The proximal median nerve stump was sutured to the distal musculocutaneous nerve stump immediately and 2 and 4 weeks after surgery to reinnervate the biceps brachii.After targeted muscle reinnervation,intramuscular myoelectric signals from the biceps brachii were recorded.Signal amplitude gradually increased with time.Biceps brachii myoelectric signals and muscle fiber morphology and grooming behavior did not significantly differ among rats subjected to delayed target muscle innervation for different periods.Targeted muscle reinnervation delayed for 4 weeks can acquire the same nerve function restoration effect as that of immediate reinnervation. 展开更多
关键词 biceps brachii delayed nerve repair delayed targeted muscle reinnervation functional reconstruction grooming test implanted electrode intramuscular myoelectric signals median nerve motor function nerve transfer
下载PDF
Effects of Laparoscopic Pelvic Autonomic Nerve-Preserving Radical Resection of Rectal Cancer on Urinary and Sexual Function
8
作者 Zheng Jia Tonghu Li Qipeng Wang 《Journal of Clinical and Nursing Research》 2023年第6期53-58,共6页
Objective:To investigate and analyze the effect of laparoscopic pelvic autonomic nerve-preserving radical resection of rectal cancer on urinary and sexual function.Methods:Cases of laparoscopic radical resection of re... Objective:To investigate and analyze the effect of laparoscopic pelvic autonomic nerve-preserving radical resection of rectal cancer on urinary and sexual function.Methods:Cases of laparoscopic radical resection of rectal cancer in our hospital from April 2018 to April 2023 were selected,and 60 patients who met the requirements were included as research subjects.The patients were divided into an experimental group and a reference group by a double-blind mechanism,with 30 cases in each group.The experimental group underwent laparoscopic pelvic autonomic radical resection,while the reference group underwent ordinary radical resection.The voiding function,urodynamics,sexual function,and blood indexes of the patients of both groups were compared.Results:The total incidence of voiding dysfunction in the experimental group was significantly lower than in the reference group(P<0.05).Urodynamics such as abdominal leak point pressure(ALPP),maximum urethral pressure(MUP),maximum urethral closure pressure(MUCP),and functional urethral length(FUL)in the experimental group were significantly better than those in the reference group(P<0.05).The incidences of erectile dysfunction and ejaculatory dysfunction in the experimental group were significantly lower than those in the reference group(P<0.05).Before the surgery,there were no significant differences in the blood indexes such as C-reactive protein(CRP),cortisol(Cor),and pre-albumin(PA)between the two groups(P>0.05);after the operation,the blood indexes of the patients in the experimental group were significantly better than those in the reference group(P<0.05).Conclusion:Laparoscopic pelvic autonomic nerve-preserving radical resection of rectal cancer has lesser effects on urinary and sexual functions. 展开更多
关键词 LAPAROSCOPY Pelvic autonomic nerve preservation Radical resection of rectal cancer Urinary and sexual function
下载PDF
Low-Power CMOS IC for Function Electrical Stimulation of Nerves 被引量:1
9
作者 李文渊 王志功 张震宇 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第3期393-397,共5页
A low-power IC for function electrical stimulation (FES) of nerves is designed for an implantable system and fabricated in CSMC's 0.6μm CMOS technology. The IC can be used for stimulating animals' spinal nerve bu... A low-power IC for function electrical stimulation (FES) of nerves is designed for an implantable system and fabricated in CSMC's 0.6μm CMOS technology. The IC can be used for stimulating animals' spinal nerve bundles and other nerves connected with a cuff type electrode. It consists of a pre-amplifier,a main amplifier,and an output stage. According to the neural signal spectrum,the bandwidth of the FES signal generator circuit is defined from 1Hz to 400kHz. The gain of the circuit is about 66dB with an output impedance of 900. The 1C can function under a single supply voltage of 3-5V. A rail-to-rail output stage helps to use the coupled power efficiently. The measured time domain performance shows that the bandwidth and the gain of the IC agree with the design. The power consumption is lower than 6mW. 展开更多
关键词 neural signal CMOS function electrical stimulation low power nerve
下载PDF
Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration 被引量:4
10
作者 Wei Zhang Xing-Xing Fang +2 位作者 Qi-Cheng Li Wei Pi Na Han 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期200-206,共7页
We previously combined reduced graphene oxide(rGO)with gelatin-methacryloyl(GelMA)and polycaprolactone(PCL)to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved.Ho... We previously combined reduced graphene oxide(rGO)with gelatin-methacryloyl(GelMA)and polycaprolactone(PCL)to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved.However,the rGO-GelMA-PCL nerve conduits differed greatly from autologous nerve transplants in their ability to promote the regeneration of injured peripheral nerves and axonal sprouting.Extracellular vesicles derived from bone marrow mesenchymal stem cells(BMSCs)can be loaded into rGO-GelMA-PCL nerve conduits for repair of rat sciatic nerve injury because they can promote angiogenesis at the injured site.In this study,12 weeks after surgery,sciatic nerve function was measured by electrophysiology and sciatic nerve function index,and myelin sheath and axon regeneration were observed by electron microscopy,immunohistochemistry,and immunofluorescence.The regeneration of microvessel was observed by immunofluorescence.Our results showed that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles were superior to rGO-GelMA-PCL conduits alone in their ability to increase the number of newly formed vessels and axonal sprouts at the injury site as well as the recovery of neurological function.These findings indicate that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles can promote peripheral nerve regeneration and neurological function recovery,and provide a new direction for the curation of peripheral nerve defect in the clinic. 展开更多
关键词 ANGIOGENESIS AXON bone mesenchymal stem cell extracellular vesicles hybrid nanofibers myelin sheath nerve conduit neurological function peripheral nerve injury reduced graphene oxide
下载PDF
Nerve growth factor-basic fibroblast growth factor poly-lactide co-glycolid sustained-release microspheres and the small gap sleeve bridging technique to repair peripheral nerve injury 被引量:3
11
作者 Ming Li Ting-Min Xu +7 位作者 Dian-Ying Zhang Xiao-Meng Zhang Feng Rao Si-Zheng Zhan Man Ma Chen Xiong Xiao-Feng Chen Yan-Hua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期162-169,共8页
We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique.Multiple growth factors play a synergistic role... We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique.Multiple growth factors play a synergistic role in promoting the repair of peripheral nerve injury;as a result,in this study,we added basic fibroblast growth factors to the microspheres to further promote nerve regeneration.First,in an in vitro biomimetic microenvironment,we developed and used a drug screening biomimetic microfluidic chip to screen the optimal combination of nerve growth factor/basic fibroblast growth factor to promote the regeneration of Schwann cells.We found that 22.56 ng/mL nerve growth factor combined with 4.29 ng/mL basic fibroblast growth factor exhibited optimal effects on the proliferation of primary rat Schwann cells.The successfully prepared nerve growth factor-basic fibroblast growth factor-poly-lactide-co-glycolid sustained-release microspheres were used to treat rat sciatic nerve transection injury using the small gap sleeve bridge technique.Compared with epithelium sutures and small gap sleeve bridging alone,the small gap sleeve bridging technique combined with drug-free sustained-release microspheres has a stronger effect on rat sciatic nerve transfection injury repair at the structural and functional level. 展开更多
关键词 biomimetic microfluidic chip growth factor in vitro biomimetic microenvironment nerve function peripheral nerve injury sciatic nerve small gap sleeve bridging sustained-release microspheres
下载PDF
Advances in 3D printing scaffolds for peripheral nerve and spinal cord injury repair 被引量:1
12
作者 Juqing Song Baiheng Lv +2 位作者 Wencong Chen Peng Ding Yong He 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期264-300,共37页
Because of the complex nerve anatomy and limited regeneration ability of natural tissue,the current treatment effect for long-distance peripheral nerve regeneration and spinal cord injury(SCI)repair is not satisfactor... Because of the complex nerve anatomy and limited regeneration ability of natural tissue,the current treatment effect for long-distance peripheral nerve regeneration and spinal cord injury(SCI)repair is not satisfactory.As an alternative method,tissue engineering is a promising method to regenerate peripheral nerve and spinal cord,and can provide structures and functions similar to natural tissues through scaffold materials and seed cells.Recently,the rapid development of 3D printing technology enables researchers to create novel 3D constructs with sophisticated structures and diverse functions to achieve high bionics of structures and functions.In this review,we first outlined the anatomy of peripheral nerve and spinal cord,as well as the current treatment strategies for the peripheral nerve injury and SCI in clinical.After that,the design considerations of peripheral nerve and spinal cord tissue engineering were discussed,and various 3D printing technologies applicable to neural tissue engineering were elaborated,including inkjet,extrusion-based,stereolithography,projection-based,and emerging printing technologies.Finally,we focused on the application of 3D printing technology in peripheral nerve regeneration and spinal cord repair,as well as the challenges and prospects in this research field. 展开更多
关键词 peripheral nerve regeneration spinal cord repair 3D printing construct bionic structure bionic function
下载PDF
Combination therapy using evening primrose oil and electrical stimulation to improve nerve function following a crush injury of sciatic nerve in male rats 被引量:7
13
作者 Omid Badri Parviz Shahabi +4 位作者 Jalal Abdolalizadeh Mohammad Reza Alipour Hadi Veladi Mehdi Farhoudi Mohsen Sharif Zak 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期458-463,共6页
Peripheral nerve injuries with a poor prognosis are common.Evening primrose oil(EPO) has beneficial biological effects and immunomodulatory properties.Since electrical activity plays a major role in neural regenerat... Peripheral nerve injuries with a poor prognosis are common.Evening primrose oil(EPO) has beneficial biological effects and immunomodulatory properties.Since electrical activity plays a major role in neural regeneration,the present study investigated the effects of electrical stimulation(ES),combined with evening primrose oil(EPO),on sciatic nerve function after a crush injury in rats.In anesthetized rats,the sciatic nerve was crushed using small haemostatic forceps followed by ES and/or EPO treatment for 4 weeks.Functional recovery of the sciatic nerve was assessed using the sciatic functional index.Histopathological changes of gastrocnemius muscle atrophy were investigated by light microscopy.Electrophysiological changes were assessed by the nerve conduction velocity of sciatic nerves.Immunohistochemistry was used to determine the remyelination of the sciatic nerve following the interventions.EPO + ES,EPO,and ES obviously improved sciatic nerve function assessed by the sciatic functional index and nerve conduction velocity of the sciatic nerve at 28 days after operation.Expression of the peripheral nerve remyelination marker,protein zero(P0),was increased in the treatment groups at 28 days after operation.Muscle atrophy severity was decreased significantly while the nerve conduction velocity was increased significantly in rats with sciatic nerve injury in the injury + EPO + ES group than in the EPO or ES group.Totally speaking,the combined use of EPO and ES may produce an improving effect on the function of sciatic nerves injured by a crush.The increased expression of P0 may have contributed to improving the functional effects of combination therapy with EPO and ES as well as the electrophysiological and histopathological features of the injured peripheral nerve. 展开更多
关键词 nerve regeneration peripheral nerve injury sciatic nerve injury evening primrose oil electrical stimulation sciatic functional index cuff electrode neural regeneration
下载PDF
Adipose-derived mesenchymal stem cells accelerate nerve regeneration and functional recovery in a rat model of recurrent laryngeal nerve injury 被引量:6
14
作者 Yun Li Wen Xu Li-yu Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第9期1544-1550,共7页
Medialization thyroplasty or injection laryngoplasty for unilateral vocal fold paralysis cannot restore mobility of the vocal fold. Recent studies have shown that transplantation of mesenchymal stem cells is effective... Medialization thyroplasty or injection laryngoplasty for unilateral vocal fold paralysis cannot restore mobility of the vocal fold. Recent studies have shown that transplantation of mesenchymal stem cells is effective in the repair of nerve injuries. This study investigated wheth- er adipose-derived stem celt transplantation could repair recurrent laryngeal nerve injury. Rat models of recurrent laryngeal nerve injury were established by crushing with micro forceps. Adipose-derived mesenchymal stem cells (ADSCs; 8 ×105) or differentiated Schwann-like adipose-derived mesenchymal stem cells (dADSCs; 8×105) or extracellular matrix were injected at the site of injury. At 2, 4 and 6 weeks post-surgery, a higher density of myelinated nerve fiber, thicker myelin sheath, improved vocal fold movement, better recovery of nerve conduction capacity and reduced thyroarytenoid muscle atrophy were found in ADSCs and dADSCs groups compared with the extracellu- lar matrix group. The effects were more pronounced in the ADSCs group than in the dADSCs group. These experimental results indicated that ADSCs transplantation could be an early interventional strategy to promote regeneration after recurrent laryngeal nerve injury. 展开更多
关键词 nerve regeneration mesenchymal stem cell transplantation adipose-derived mesenchymal stem cells recurrent laryngeal nerve LARYNX nerve injury functional recovery vocal fold cell differentiation neural regeneration
下载PDF
Transdermal delivery of 4-aminopyridine accelerates motor functional recovery and improves nerve morphology following sciatic nerve crush injury in mice 被引量:3
15
作者 Andrew RClark Chia George Hsu +2 位作者 M A Hassan Talukder Mark Noble John CElfar 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第1期136-144,共9页
Oral 4-aminopyridine(4-AP)is clinically used for symptomatic relief in multiple sclerosis and we recently demonstrated that systemic 4-AP had previously unknown clinically-relevant effects after traumatic peripheral n... Oral 4-aminopyridine(4-AP)is clinically used for symptomatic relief in multiple sclerosis and we recently demonstrated that systemic 4-AP had previously unknown clinically-relevant effects after traumatic peripheral nerve injury including the promotion of re-myelination,improvement of nerve conductivity,and acceleration of functional recovery.We hypothesized that,instead of oral or injection administration,transdermal 4-AP(TD-4-AP)could also improve functional recovery after traumatic peripheral nerve injury.Mice with surgical traumatic peripheral nerve injury received TD-4AP or vehicle alone and were examined for skin permeability,pharmacokinetics,functional,electrophysiological,and nerve morphological properties.4-AP showed linear pharmacokinetics and the maximum plasma 4-AP concentrations were proportional to TD-4-AP dose.While a single dose of TD-4-AP administration demonstrated rapid transient improvement in motor function,chronic TD-4-AP treatment significantly improved motor function and nerve conduction and these effects were associated with fewer degenerating axons and thicker myelin sheaths than those from vehicle controls.These findings provide direct evidence for the potential transdermal applicability of 4-AP and demonstrate that 4-AP delivered through the skin can enhance in-vivo functional recovery and nerve conduction while decreasing axonal degeneration.The animal experiments were approved by the University Committee on Animal Research(UCAR)at the University of Rochester(UCAR-2009-019)on March 31,2017. 展开更多
关键词 4-AMINOPYRIDINE electron microscopy functional recovery nerve conduction velocity PERIPHERAL nerve injury PHARMACOKINETICS TRANSDERMAL administration
下载PDF
Structure and function of the contactin-associated protein family in myelinated axons and their relationship with nerve diseases 被引量:8
16
作者 Yan Zou Wei-feng Zhang +7 位作者 Hai-ying Liu Xia Li Xing Zhang Xiao-fang Ma Yang Sun Shi-yi Jiang Quan-hong Ma De-en Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第9期1551-1558,共8页
The contactin-associated protein (Caspr) family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family- CNTNA... The contactin-associated protein (Caspr) family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family- CNTNAP1 (Casprl), CNTNAP2 (Caspr2), CNTNAP3 (Caspr3), CNTNAP4 (Caspr4) and CNTNAP5 (Caspr5), Casprl-5 is not only involved in the formation of myelinated axons, but also participates in maintaining the stability of adjacent connections. Casprl participates in the formation, differentiation, and proliferation of neurons and astrocytes, and in motor control and cognitive function. We also analyzed the relationship between the Caspr family and neurodegenerative diseases, multiple sclerosis, and autoimmune encephalitis. However, the effects of Caspr on disease course and prognosis remain poorly understood. The effects of Caspr on disease diagnosis and treatment need further investigation. 展开更多
关键词 nerve regeneration contactin-associated protein family myelinated axon structure function Alzheimer's disease multiple sclerosis autism spectrum disorders NEURODEGENERATION neural regeneration
下载PDF
Three-dimensional visualization of the functional fascicular groups of a long-segment peripheral nerve 被引量:3
17
作者 Jian Qi Wei-Ya Wang +7 位作者 Ying-Chun Zhong Jia-Ming Zhou Peng Luo Ping Tang Cai-Feng He Shuang Zhu Xiao-Lin Liu Yi Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第8期1465-1470,共6页
The three-dimensional(3D) visualization of the functional bundles in the peripheral nerve provides direct and detailed intraneural spatial information. It is useful for selecting suitable surgical methods to repair ... The three-dimensional(3D) visualization of the functional bundles in the peripheral nerve provides direct and detailed intraneural spatial information. It is useful for selecting suitable surgical methods to repair nerve defects and in optimizing the construction of tissue-engineered nerve grafts. However, there remain major technical hurdles in obtaining, registering and interpreting 2D images, as well as in establishing 3D models. Moreover, the 3D models are plagued by poor accuracy and lack of detail and cannot completely reflect the stereoscopic microstructure inside the nerve. To explore and help resolve these key technical problems of 3D reconstruction, in the present study, we designed a novel method based on re-imaging techniques and computer image layer processing technology. A 20-cm ulnar nerve segment from the upper arm of a fresh adult cadaver was used for acetylcholinesterase(ACh E) staining. Then, 2D panoramic images were obtained before and after ACh E staining under the stereomicroscope. Using layer processing techniques in Photoshop, a space transformation method was used to fulfill automatic registration. The contours were outlined, and the 3D rendering of functional fascicular groups in the long-segment ulnar nerve was performed with Amira 4.1 software. The re-imaging technique based on layer processing in Photoshop produced an image that was detailed and accurate. The merging of images was accurate, and the whole procedure was simple and fast. The least square support vector machine was accurate, with an error rate of only 8.25%. The 3D reconstruction directly revealed changes in the fusion of different nerve functional fascicular groups. In conclusion. The technique is fast with satisfactory visual reconstruction. 展开更多
关键词 nerve regeneration peripheral nerve ulnar nerve three-dimensional reconstruction functional fascicular group REGISTRATION segmentation locating spots auto-registration ACETYLCHOLINESTERASE neural regeneration
下载PDF
Cerebrolysin improves sciatic nerve dysfunction in a mouse model of diabetic peripheral neuropathy 被引量:17
18
作者 Han-yu Dong Xin-mei Jiang +3 位作者 Chun-bo Niu Lin Du Jun-yan Feng Fei-yong Jia 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期156-162,共7页
To examine the effects of Cerebrolysin on the treatment of diabetic peripheral neuropathy, we first established a mouse model of type 2 diabetes mellitus by administering a high-glucose, high-fat diet and a single int... To examine the effects of Cerebrolysin on the treatment of diabetic peripheral neuropathy, we first established a mouse model of type 2 diabetes mellitus by administering a high-glucose, high-fat diet and a single intraperitoneal injection of streptozotocin. Mice defined as diabetic in this model were then treated with 1.80, 5.39 or 8.98 m L/kg of Cerebrolysin via intraperitoneal injections for 10 consecutive days. Our results demonstrated that the number, diameter and area of myelinated nerve fibers increased in the sciatic nerves of these mice after administration of Cerebrolysin. The results of several behavioral tests showed that Cerebrolysin dose-dependently increased the slope angle in the inclined plane test(indicating an improved ability to maintain body position), prolonged tail-flick latency and foot-licking time(indicating enhanced sensitivity to thermal and chemical pain, respectively, and reduced pain thresholds), and increased an index of sciatic nerve function in diabetic mice compared with those behavioral results in untreated diabetic mice. Taken together, the anatomical and functional results suggest that Cerebrolysin ameliorated peripheral neuropathy in a mouse model of type 2 diabetes mellitus. 展开更多
关键词 nerve regeneration peripheral neuropathy diabetes mellitus Cerebrolysin neurological function sciatic nerve neural regeneration
下载PDF
Decellularized optic nerve functional scaffold transplant facilitates directional axon regeneration and remyelination in the injured white matter of the rat spinal cord 被引量:5
19
作者 Yu-Rong Bai Bi-Qin Lai +6 位作者 Wei-Tao Han Jia-Hui Sun Ge Li Ying Ding Xiang Zeng Yuan-Huan Ma Yuan-Shan Zeng 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第11期2276-2283,共8页
Axon regeneration and remyelination of the damaged region is the most common repair strategy for spinal cord injury.However,achieving good outcome remains difficult.Our previous study showed that porcine decellularize... Axon regeneration and remyelination of the damaged region is the most common repair strategy for spinal cord injury.However,achieving good outcome remains difficult.Our previous study showed that porcine decellularized optic nerve better mimics the extracellular matrix of the embryonic porcine optic nerve and promotes the directional growth of dorsal root ganglion neurites.However,it has not been reported whether this material promotes axonal regeneration in vivo.In the present study,a porcine decellularized optic nerve was seeded with neurotrophin-3-overexpressing Schwann cells.This functional scaffold promoted the directional growth and remyelination of regenerating axons.In vitro,the porcine decellularized optic nerve contained many straight,longitudinal channels with a uniform distribution,and microscopic pores were present in the channel wall.The spatial micro topological structure and extracellular matrix were conducive to the adhesion,survival and migration of neural stem cells.The scaffold promoted the directional growth of dorsal root ganglion neurites,and showed strong potential for myelin regeneration.Furthermore,we transplanted the porcine decellularized optic nerve containing neurotrophin-3-overexpressing Schwann cells in a rat model of T10 spinal cord defect in vivo.Four weeks later,the regenerating axons grew straight,the myelin sheath in the injured/transplanted area recovered its structure,and simultaneously,the number of inflammatory cells and the expression of chondroitin sulfate proteoglycans were reduced.Together,these findings suggest that porcine decellularized optic nerve loaded with Schwann cells overexpressing neurotrophin-3 promotes the directional growth of regenerating spinal cord axons as well as myelin regeneration.All procedures involving animals were conducted in accordance with the ethical standards of the Institutional Animal Care and Use Committee of Sun Yat-sen University(approval No.SYSU-IACUC-2019-B034)on February 28,2019. 展开更多
关键词 axonal regeneration decellularized optic nerve directional regeneration functional scaffold microenvironment NEUROTROPHIN-3 optic nerve REMYELINATION Schwann cells tissue engineering white matter injury
下载PDF
Axonotmesis-evoked plantar vasodilatation as a novel assessment of C-fiber afferent function after sciatic nerve injury in rats 被引量:1
20
作者 Xue-Song Wang Xue Chen +3 位作者 Tian-Wen Gu Ya-Xian Wang Da-Guo Mi Wen Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第12期2164-2172,共9页
Quantitative assessment of the recovery of nerve function, especially sensory and autonomic nerve function, remains a challenge in the field of nerve regeneration research. We previously found that neural control of v... Quantitative assessment of the recovery of nerve function, especially sensory and autonomic nerve function, remains a challenge in the field of nerve regeneration research. We previously found that neural control of vasomotor activity could be potentially harnessed to evaluate nerve function. In the present study, five different models of left sciatic nerve injury in rats were established: nerve crush injury, nerve transection/ suturing, nerve defect/autografting, nerve defect/conduit repair, and nerve defect/non-regeneration. Laser Doppler perfusion imaging was used to analyze blood perfusion of the hind feet. The toe pinch test and walking track analysis were used to assess sensory and motor functions of the rat hind limb, respectively. Transmission electron microscopy was used to observe the density of unmyelinated axons in the injured sciatic nerve. Our results showed that axonotmesis-evoked vasodilatation in the foot 6 months after nerve injury/repair recovered to normal levels in the nerve crush injury group and partially in the other three repair groups;whereas the nerve defect/non-regeneration group exhibited no recovery in vasodilatation. Furthermore, the recovery index of axonotmesis-evoked vasodilatation was positively correlated with toe pinch reflex scores and the density of unmyelinated nerve fibers in the regenerated nerve. As C-fiber afferents are predominantly responsible for dilatation of the superficial vasculature in the glabrous skin in rats, the present findings indicate that axonotmesis-evoked vasodilatation can be used as a novel way to assess C-afferent function recovery after peripheral nerve injury. This study was approved by the Ethics Committee for Laboratory Animals of Nantong University of China (approval No. 20130410-006) on April 10, 2013. 展开更多
关键词 nerve REGENERATION axonotmesis-evoked VASODILATATION laser Doppler perfusion imaging nerve function autonomic nerve C-FIBER AFFERENT function peripheral nerve injury unmyelinated AFFERENT fiber REGENERATION neural REGENERATION
下载PDF
上一页 1 2 227 下一页 到第
使用帮助 返回顶部