期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Biodegradable, Super-Strong, and Conductive Cellulose Macrofibers for Fabric-Based Triboelectric Nanogenerator 被引量:7
1
作者 Sanming Hu Jing Han +8 位作者 Zhijun Shi Kun Chen Nuo Xu Yifei Wang Ruizhu Zheng Yongzhen Tao Qijun Sun Zhong Lin Wang Guang Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期157-176,共20页
Electronic fibers used to fabricate wearable triboelectric nanogenerator(TENG) for harvesting human mechanical energy have been extensively explored. However, little attention is paid to their mutual advantages of env... Electronic fibers used to fabricate wearable triboelectric nanogenerator(TENG) for harvesting human mechanical energy have been extensively explored. However, little attention is paid to their mutual advantages of environmental friendliness, mechanical properties, and stability. Here, we report a super-strong, biodegradable, and washable cellulose-based conductive macrofibers, which is prepared by wet-stretching and wet-twisting bacterial cellulose hydrogel incorporated with carbon nanotubes and polypyrrole. The cellulose-based conductive macrofibers possess high tensile strength of 449 MPa(able to lift 2 kg weights), good electrical conductivity(~ 5.32 S cm^(-1)), and excellent stability(Tensile strength and conductivity only decrease by 6.7% and 8.1% after immersing in water for 1 day). The degradation experiment demonstrates macrofibers can be degraded within 108 h in the cellulase solution. The designed fabric-based TENG from the cellulose-base conductive macrofibers shows a maximum open-circuit voltage of 170 V, short-circuit current of 0.8 μA, and output power at 352 μW, which is capable of powering the commercial electronics by charging the capacitors. More importantly, the fabric-based TENGs can be attached to the human body and work as self-powered sensors to effectively monitor human motions. This study suggests the potential of biodegradable, super-strong, and washable conductive cellulose-based fiber for designing eco-friendly fabric-based TENG for energy harvesting and biomechanical monitoring. 展开更多
关键词 BIODEGRADABLE Conductive macrofiber fabric-based TENG Energy harvesting Self-powered sensors
下载PDF
Fully Fabric-Based Triboelectric Nanogenerators as Self-Powered Human-Machine Interactive Keyboards 被引量:6
2
作者 Jia Yi Kai Dong +4 位作者 Shen Shen Yang Jiang Xiao Peng Cuiying Ye Zhong Lin Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期42-54,共13页
Combination flexible and stretchable textiles with self-powered sensors bring a novel insight into wearable functional electronics and cyber security in the era of Internet of Things.This work presents a highly flexib... Combination flexible and stretchable textiles with self-powered sensors bring a novel insight into wearable functional electronics and cyber security in the era of Internet of Things.This work presents a highly flexible and self-powered fully fabric-based triboelectric nanogenerator(F-TENG)with sandwiched structure for biomechanical energy harvesting and real-time biometric authentication.The prepared F-TENG can power a digital watch by low-frequency motion and respond to the pressure change by the fall of leaves.A self-powered wearable keyboard(SPWK)is also fabricated by integrating large-area F-TENG sensor arrays,which not only can trace and record electrophysiological signals,but also can identify individuals’typing characteristics by means of the Haar wavelet.Based on these merits,the SPWK has promising applications in the realm of wearable electronics,self-powered sensors,cyber security,and artificial intelligences. 展开更多
关键词 Triboelectric nanogenerators Self-powered keyboard Human-machine interface Wearable electronics Fully fabric-based
下载PDF
All-Fabric Bi-directional Actuators for Multi-joint Assistance of Upper Limb
3
作者 Junlin Ma Diansheng Chen +4 位作者 Zhe Liu Jie Wei Xianglin Zhang Zihan Zeng Yongkang Jiang 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2661-2669,共9页
According to clinical studies,upper limb robotic suits are vital to reduce therapist fatigue and accelerate patient rehabilitation.Soft pneumatic actuators have drawn increasing attention for the development of wearab... According to clinical studies,upper limb robotic suits are vital to reduce therapist fatigue and accelerate patient rehabilitation.Soft pneumatic actuators have drawn increasing attention for the development of wearable robots due to their low weight,flexibility,and high power-to-weight ratio.However,most of current actuators were designed for the flexion assistance of a specific joint,and that for joint extension requires further investigation.Furthermore,designing an actuator for diverse working scenarios remains a challenge.In this paper,we propose an all-fabric bi-directional actuator to assist the flexion and extension of the elbow,wrist,and fingers.A mathematical model is presented that predicts the deformation and guides the design of the proposed bi-directional actuator.To further validate the applicability and adaptability of the proposed actuator for different joints,we developed a 3-DOF soft robotic suit.Preliminary results show that the robotic suit can assist the motion of the elbow,wrist,and finger of the subject. 展开更多
关键词 Soft robotic suits fabric-based actuators Multi-DOF motion Upper limb rehabilitation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部