The fabrication and characterization of 1700 V 7 A 4H-SiC vertical double-implanted metal-oxide-semiconductor field-effect transistors (VDMOSFETs) are reported. The drift layer is 17μm in thickness with 5 × 10...The fabrication and characterization of 1700 V 7 A 4H-SiC vertical double-implanted metal-oxide-semiconductor field-effect transistors (VDMOSFETs) are reported. The drift layer is 17μm in thickness with 5 × 10^15 cm^-3 n-type doping, and the channel length is 1μm. The MOSFETs show a peak mobility of 17cm2/V.s and a typical threshold voltage of 3 V. The active area of 0.028cm2 delivers a forward drain current of 7A at Vcs = 22 V and VDS= 15 V. The specific on-resistance (Ron,sv) is 18mΩ.cm2 at VGS= 22 V and the blocking voltage is 1975 V (IDS 〈 lOOnA) at VGS = 0 V.展开更多
A single electron transistor based on a silicon-on-insulator is successfully fabricated with electron-beam nano- lithography, inductively coupled plasma etching, thermal oxidation and other techniques. The unique desi...A single electron transistor based on a silicon-on-insulator is successfully fabricated with electron-beam nano- lithography, inductively coupled plasma etching, thermal oxidation and other techniques. The unique design of the pattern inversion is used, and the pattern is transferred to be negative in the electron-beam lithography step. The oxidation process is used to form the silicon oxide tunneling barriers, and to further reduce the effective size of the quantum dot. Combinations of these methods offer advantages of good size controllability and accuracy, high reproducibility, low cost, large-area contacts, allowing batch fabrication of single electron transistors and good integration with a radio-frequency tank circuit. The fabricated single electron transistor with a quantum dot about 50nto in diameter is demonstrated to operate at temperatures up to 70K. The charging energy of the Coulomb island is about 12.5meV.展开更多
Design, fabrication and characterizations of GaN-based blue micro light emitting diode (LED) arrays are reported. The GaN micro-LED array consists of 320×256 pixels with a pitch size of 30μm. Each pixel is 25...Design, fabrication and characterizations of GaN-based blue micro light emitting diode (LED) arrays are reported. The GaN micro-LED array consists of 320×256 pixels with a pitch size of 30μm. Each pixel is 25×25μm^2 in size, which is designed for backside emission and high density flip-chip packaging. The selected LED pixels being tested exhibit good uniformity in terms of turn-on voltage and reverse leakage current. The efficiency droop behavior and reliability behavior under high forward current stress are also studied. The micro-LED pixel shows improved reliability, which is likely caused by enhanced heat dissipation.展开更多
Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray ...Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy that Fe has been successfully doped into lattices of In2O3 nanowires. The EDS measurements reveal a large amount of oxygen vacancies existing in the Fe-doped In2O3 nanowires. The Fe dopant exists as a mixture of Fe2+ and Fe3+, as revealed by the XPS. The origin of room-temperature ferromagnetism in Fe-doped In2O3 nanowires is explained by the bound magnetic polaron model.展开更多
We propose a novel 3-dimensional hollow waveguide with a variable air core for widely tunable devices.We observed a wavelength shift of 1.8 nm in a hollow waveguide resonator with a displacement of 6μm in an air core.
CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposit...CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature.展开更多
基金Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No 2013ZX02305
文摘The fabrication and characterization of 1700 V 7 A 4H-SiC vertical double-implanted metal-oxide-semiconductor field-effect transistors (VDMOSFETs) are reported. The drift layer is 17μm in thickness with 5 × 10^15 cm^-3 n-type doping, and the channel length is 1μm. The MOSFETs show a peak mobility of 17cm2/V.s and a typical threshold voltage of 3 V. The active area of 0.028cm2 delivers a forward drain current of 7A at Vcs = 22 V and VDS= 15 V. The specific on-resistance (Ron,sv) is 18mΩ.cm2 at VGS= 22 V and the blocking voltage is 1975 V (IDS 〈 lOOnA) at VGS = 0 V.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11074280 and 11403084the Instrument Developing Project of Chinese Academy of Sciences under Grant No YZ201152+2 种基金the Fundamental Research Funds for Central Universities under Grant Nos JUSRP51323B and JUDCF12032the Joint Innovation Project of Jiangsu Province under Grant No BY2013015-19the Graduate Student Innovation Program for Universities of Jiangsu Province under Grant No CXLX12_0724
文摘A single electron transistor based on a silicon-on-insulator is successfully fabricated with electron-beam nano- lithography, inductively coupled plasma etching, thermal oxidation and other techniques. The unique design of the pattern inversion is used, and the pattern is transferred to be negative in the electron-beam lithography step. The oxidation process is used to form the silicon oxide tunneling barriers, and to further reduce the effective size of the quantum dot. Combinations of these methods offer advantages of good size controllability and accuracy, high reproducibility, low cost, large-area contacts, allowing batch fabrication of single electron transistors and good integration with a radio-frequency tank circuit. The fabricated single electron transistor with a quantum dot about 50nto in diameter is demonstrated to operate at temperatures up to 70K. The charging energy of the Coulomb island is about 12.5meV.
基金Supported by the National Key Research and Development Program under Grant No 2016YFB0400902the Science and Technology Project of State Grid Corporation of China under Grant No SGSDDKOOKJJS1600071
文摘Design, fabrication and characterizations of GaN-based blue micro light emitting diode (LED) arrays are reported. The GaN micro-LED array consists of 320×256 pixels with a pitch size of 30μm. Each pixel is 25×25μm^2 in size, which is designed for backside emission and high density flip-chip packaging. The selected LED pixels being tested exhibit good uniformity in terms of turn-on voltage and reverse leakage current. The efficiency droop behavior and reliability behavior under high forward current stress are also studied. The micro-LED pixel shows improved reliability, which is likely caused by enhanced heat dissipation.
基金Supported by the National Basic Research Program of China under Grant Nos 2014CB921101,2014CB921103 and2013CB922103the National Natural Science Foundation of China under Grant Nos 11274003,61176088 and 61274102+1 种基金the Program for the New Century Excellent Talents in University under Grant No NCET-11-0240the PAPD Project,and the Fundamental Research Funds for the Central Universities
文摘Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy that Fe has been successfully doped into lattices of In2O3 nanowires. The EDS measurements reveal a large amount of oxygen vacancies existing in the Fe-doped In2O3 nanowires. The Fe dopant exists as a mixture of Fe2+ and Fe3+, as revealed by the XPS. The origin of room-temperature ferromagnetism in Fe-doped In2O3 nanowires is explained by the bound magnetic polaron model.
文摘We propose a novel 3-dimensional hollow waveguide with a variable air core for widely tunable devices.We observed a wavelength shift of 1.8 nm in a hollow waveguide resonator with a displacement of 6μm in an air core.
基金Supported by the Key Program of the National Natural Science Foundation of China under Grant No 61334009the National High Technology Research and Development Program of China under Grant No 2014AA032604
文摘CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature.