期刊文献+
共找到3,282篇文章
< 1 2 165 >
每页显示 20 50 100
Suitable retention and recovery technology of floor coal at ends of fully mechanized face with great mining heights 被引量:3
1
作者 Zhang Nenghu Wu Qi +1 位作者 YuanYong Bai Qingsheng 《Mining Science and Technology》 EI CAS 2011年第2期281-285,共5页
Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss o... Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss of coal.In order to improve coal recovery rates and to ensure efficiency of equipment at coal mining faces,we investigated suitable retention methods and recovery technology of floor coal at face ends.The upper floor coal can directly be recovered by a shearer with floor dinting.The lower floor coal is recovered by shearer with floor dinting after advanced floor dinting and retaining a step for protecting coal sides in a haulage gateway.Field practice shows that this method can improve the coal recovery rates at fully mechanized working faces with great mining heights. 展开更多
关键词 Great mining heights Floor coal at face ends Floor coal recovery Floor dinting Step for protecting coal side
下载PDF
Ground pressure and overlying strata structure for a repeated mining face of residual coal after room and pillar mining 被引量:10
2
作者 Jiang Bangyou Wang Lianguo +2 位作者 Lu Yinlong Sun Xiaokang Jin Gan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期645-652,共8页
To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were dev... To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable. 展开更多
关键词 Residual coal after room and pillar mining Repeated mining Fully mechanized caving face Roof control Support resistance
下载PDF
The adjusting mining technology of combining fully mechanized with individual prop,rotating,hilt,irregular form,and double unit face on thin coal seam of Tianchen Mine 被引量:1
3
作者 宋华岭 温国锋 李金克 《Journal of Coal Science & Engineering(China)》 2008年第1期44-48,共5页
Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This inno... Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully. 展开更多
关键词 mining of thin coal seam double unit face rotational and adjusting mining
下载PDF
Back-and-forth mining for hard and thick coal seams—research about the mining technology for fully mechanized caving working face of Datong Mine
4
作者 金智新 于红 +1 位作者 于斌 宋华岭 《Journal of Coal Science & Engineering(China)》 2005年第2期1-4,共4页
The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the s... The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the systemic design and working face out-play, tried to perfect the caving mining technology of hard-thick coal seams further. 展开更多
关键词 hard and thick coal seams fully mechanized caving working face back-and- forth mining
下载PDF
Prediction of face advance rate and determination of the operation efficiency in retreat longwall mining panel using rock engineering system 被引量:6
5
作者 Sajjad Aghababaei Hossein Jalalifar Gholamreza Saeedi 《International Journal of Coal Science & Technology》 EI 2019年第3期419-429,共11页
A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the conc... A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines. 展开更多
关键词 face ADVANCE rate Rock engineering systems Operation efficiency LONGWALL mining Parvadeh-I coal mine
下载PDF
Primary study on the "θ" letter type overlying multi-strata spatial structure of mining face surrounded by mined areas
6
作者 汪华君 姜福兴 《Journal of Coal Science & Engineering(China)》 2007年第3期256-260,共5页
The overlying strata spatial structure academic viewpoint thinks the primary factor which controls the stope presses is the overlying strata spatial structure movement; the spatial structure above the later period coa... The overlying strata spatial structure academic viewpoint thinks the primary factor which controls the stope presses is the overlying strata spatial structure movement; the spatial structure above the later period coal pillar surrounded by mined areas is the most complex overlying strata spatial structure and study on its evolution law has the important realistic project significance for strata movement control and production safety. The existing research results indicate that the special structure of the first working face of the mine begins to develop lengthways from stratum movement above mined areas and extends level in the exploitation direction. From existing overlying strata spatial structure fundamental research achievement, the spatial structure above the later period coal column surrounded by mined areas have following characteristic: The spatial structure formation is from the top to the lower and from large to small. According to the findings, a formula with the use of rock layer migration angle delta was put forward to estimate isolated island coal column width on which different stratum structure is gonging to form. 展开更多
关键词 mining face overlying strata spacial structure supporting press isolated coal pillar
下载PDF
Systematic principles of surrounding rock control in longwall mining within thick coal seams 被引量:9
7
作者 Jiachen Wang Zhaohui Wang 《International Journal of Mining Science and Technology》 EI CSCD 2019年第1期65-71,共7页
Effective surrounding rock control is a prerequisite for realizing safe mining in underground coal mines.In the past three decades, longwall top-coal caving mining(LTCC) and single pass large height longwall mining(SP... Effective surrounding rock control is a prerequisite for realizing safe mining in underground coal mines.In the past three decades, longwall top-coal caving mining(LTCC) and single pass large height longwall mining(SPLL) found expanded usage in extracting thick coal seams in China. The two mining methods lead to large void space left behind the working face, which increases the difficulty in ground control.Longwall face failure is a common problem in both LTCC and SPLL mining. Such failure is conventionally attributed to low strength and high fracture intensity of the coal seam. However, the stiffness of main components included in the surrounding rock system also greatly influences longwall face stability.Correspondingly, surrounding rock system is developed for LTCC and SPLL faces in this paper. The conditions for simultaneous balance of roof structure and longwall face are put forward by taking the stiffness of coal seam, roof strata and hydraulic support into account. The safety factor of the longwall face is defined as the ratio between the ultimate bearing capacity and actual load imposed on the coal wall.The influences provided by coal strength, coal stiffness, roof stiffness, and hydraulic support stiffness,as well as the movement of roof structure are analyzed. Finally, the key elements dominating longwall face stability are identified for improving surrounding rock control effectiveness in LTCC and SPLL faces. 展开更多
关键词 LONGWALL top coal CAVING mining Single PASS large HEIGHT LONGWALL mining SURROUNDING rock system LONGWALL face stability
下载PDF
In-pit coal mine personnel uniqueness detection technology based on personnel positioning and face recognition 被引量:11
8
作者 Sun Jiping Li Chenxin 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期357-361,共5页
Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance manag... Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance management such as multiple cards for one person, and swiping one's cards by others in China at present. Therefore, the research introduces a uniqueness detection system and method for in-pit coal-mine personnel integrated into the in-pit coal mine personnel positioning system, establishing a system mode based on face recognition + recognition of personnel positioning card + release by automatic detection. Aiming at the facts that the in-pit personnel are wearing helmets and faces are prone to be stained during the face recognition, the study proposes the ideas that pre-process face images using the 2D-wavelet-transformation-based Mallat algorithm and extracts three face features: miner light, eyes and mouths, using the generalized symmetry transformation-based algorithm. This research carried out test with 40 clean face images with no helmets and 40 lightly-stained face images, and then compared with results with the one using the face feature extraction method based on grey-scale transformation and edge detection. The results show that the method described in the paper can detect accurately face features in the above-mentioned two cases, and the accuracy to detect face features is 97.5% in the case of wearing helmets and lightly-stained faces. 展开更多
关键词 coal mine Uniqueness detection Recognition of personnel positioning cards face recognition Generalized symmetry transformation
下载PDF
Surrounding Rock Failure Mechanism and Control Technology of Gob-Side Entry with Triangle Coal Pillar at Island Longwall Panel in 15 m Extra-Thick Coal Seams
9
作者 Hao Sun 《World Journal of Engineering and Technology》 2024年第2期373-388,共16页
Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining peri... Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face. 展开更多
关键词 Island coal face Evolution Law of Surrounding Rock Stress Field Strong Mine Pressure Hazardous Area
下载PDF
Waste-filling in fully-mechanized coal mining and its application 被引量:27
10
作者 MIAO Xie-xing ZHANG Ji-xiong FENG Mei-mei 《Journal of China University of Mining and Technology》 EI 2008年第4期479-482,共4页
A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-us... A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae. 展开更多
关键词 fully-mechanized coal mining coal mining with gangue backfilling mining under buildings railways and water bodies rock pressure around coal face control of ground subsidence
下载PDF
Prevention of gob ignitions and explosions in longwall mining using dynamic seals 被引量:4
11
作者 Brune Jürgen F. Saki Saqib A. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第6期999-1003,共5页
Most, if not all longwall gob areas accumulate explosive methane-air mixtures that pose a deadly hazard to miners. Numerous mine explosions have originated from explosive gas zones(EGZs) in the longwall gob. Since 201... Most, if not all longwall gob areas accumulate explosive methane-air mixtures that pose a deadly hazard to miners. Numerous mine explosions have originated from explosive gas zones(EGZs) in the longwall gob. Since 2010, researchers at the Colorado School of Mines(CSM) have studied EGZ formation in longwall gobs under two long-term research projects funded by the National Institute for Occupational Safety and Health. Researchers used computational fluid dynamics along with in-mine measurements. For the first time, they demonstrated that EGZs form along the fringe areas between the methane-rich atmospheres and the fresh air ventilated areas along the working face and present an explosion and fire hazard to mine workers. In this study, researchers found that, for progressively sealed gobs, a targeted injection of nitrogen from the headgate and tailgate, along with a back return ventilation arrangement, will create a dynamic seal of nitrogen that effectively separates the methane zone from the face air and eliminates the EGZs to prevent explosions. Using this form of nitrogen injection to create dynamic seals should be a consideration for all longwall operators. 展开更多
关键词 MINE explosions face ignitions coal mining LONGWALL mining METHANE
下载PDF
The Recent Technological Development of Intelligent Mining in China 被引量:36
12
作者 Jinhua Wang Zenghua Huang 《Engineering》 SCIE EI 2017年第4期439-444,共6页
In the last five years, China has seen the technological development of intelligent mining and the application of the longwall automation technology developed by the Longwall Automation Steering Committee. This paper ... In the last five years, China has seen the technological development of intelligent mining and the application of the longwall automation technology developed by the Longwall Automation Steering Committee. This paper summarizes this great achievement, which occurred during the 12th Five-Year Plan (2011-2015), and which included the development of a set of intelligent equipment for hydraulic-powered supports, information transfers, dynamic decision-making, performance coordination, and the achievement of a high level of reliability despite difficult conditions. Within China, the intelligent system of a set of hydraulic-powered supports was completed, with our own intellectual property rights. An intelligent mining model was developed that permitted unmanned operation and single-person inspection on the work face. With these technologies, the number of miners on the work face can now be significantly reduced. Miners are only required to monitor mining machines on the roadway or at the surface control center, since intelligent mining can be applied to extract middle-thick or thick coal seams. As a result, miners' safety has been improved. Finally, this Darter discusses theprospects and challenges of intelligent mining over the next ten years. 展开更多
关键词 coal mineIntelligent mining Mechanized mining work face Longwall Automation Steering CommitteeIntelligent service center
下载PDF
基于FaceNet的煤矿人员考勤识别 被引量:2
13
作者 刘宝玉 亢健铭 范树凯 《煤炭技术》 CAS 北大核心 2022年第9期189-191,共3页
煤矿人员出入井考勤系统的准确性不仅是煤矿安全的必要保障,而且也可为突发事故的及时救援提供考量依据。通过传统的考勤模式加上生物特征识别可有效提高煤矿人员出入井识别效率。针对煤矿生产环境中存在煤尘、粉尘污染人员面部等问题,... 煤矿人员出入井考勤系统的准确性不仅是煤矿安全的必要保障,而且也可为突发事故的及时救援提供考量依据。通过传统的考勤模式加上生物特征识别可有效提高煤矿人员出入井识别效率。针对煤矿生产环境中存在煤尘、粉尘污染人员面部等问题,采用MTCNN人脸检测方法对煤矿人员出入井进行人脸检测,并结合FaceNet人脸识别方法识别出入井人员信息。经实验表明,该方法可有效、实时地监控人员考勤,避免了一人多卡等违规现象。 展开更多
关键词 煤矿考勤 生物特征 人脸检测 人脸识别
下载PDF
Mating model on production capacity for the system of cutting coal and drawing top-coal in FMMSC
14
作者 翟新献 《Journal of Coal Science & Engineering(China)》 2007年第2期113-117,共5页
Being a safe and highly-efficient mining method, fully mechanized mining with sublevel caving (FMMSC) was extensively employed in Chinese coal mines with thick seam. In order to make drawing top-coal furthest to par... Being a safe and highly-efficient mining method, fully mechanized mining with sublevel caving (FMMSC) was extensively employed in Chinese coal mines with thick seam. In order to make drawing top-coal furthest to parallel work with shearer cutting coal, decrease failure ratio of rear scraper conveyor and increase safe production capacity of equipments, based on production technology, set up the mating model of safe production capacity of equipments for the system of drawing top-coal and shearer cutting coal in coal face with sublevel caving. It is mean capability of drawing top-coal adapted to the capability of shearer cutting coal in a working circle in the coal face that was deduced. The type selection of equipment of rear scraper conveyor can be tackled with this mating model. The model was applied in FMMSC in Yangcun Coal Mine, Yima Coal Group of China. With the mating light-equipments, the coal output in coal face attained 1.05 Mt in 2004. It gained better technical-economic benefit. 展开更多
关键词 coal mine coal face fully mechanized mining with sublevel caving (FMMSC) system of curing coal and drawing top-coal mating equipments
下载PDF
Research on Feasibility of Top-Coal Caving Based on Neural Network Technique
15
作者 王家臣 吴志山 +2 位作者 冯士伟 沈掌旺 侯社伟 《Journal of China University of Mining and Technology》 2001年第1期10-13,共4页
Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used ... Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used to forecast the mining cost of working faces, which shows the model’s potential prospect of applications. 展开更多
关键词 top coal caving neural network mining cost of working face
下载PDF
煤矿井下非均匀照度图像去噪研究 被引量:1
16
作者 张旭辉 麻兵 +2 位作者 杨文娟 董征 李语阳 《工矿自动化》 CSCD 北大核心 2024年第2期1-8,共8页
煤矿综采工作面空间小、照明环境复杂多变,采煤过程中伴随着大量的粉尘、大雾,导致采集的图像出现曝光、细节特征减弱等问题,难以对井下照明区域光照强度过大的图像进行有效的特征提取。针对上述问题,提出了一种煤矿井下非均匀照度图像... 煤矿综采工作面空间小、照明环境复杂多变,采煤过程中伴随着大量的粉尘、大雾,导致采集的图像出现曝光、细节特征减弱等问题,难以对井下照明区域光照强度过大的图像进行有效的特征提取。针对上述问题,提出了一种煤矿井下非均匀照度图像去噪算法。首先,将视频截取为图像,判断图像是否需要进行光照抑制,将需要进行光照抑制的RGB图像拆分通道,并计算每个通道的光照调节因子,实现图像的整体光照调节;然后,将未进行整体光照抑制的图像和经整体光照抑制的图像进行反射分量提取,即将输入的图像转换为HSV空间图像,使用单尺度Retinex(SSR)算法对V通道图像中的光照分量进行单独处理,将V分量中的入射分量去除,保留反射分量,并对反射分量使用直方图均衡算法实现光照均衡化处理;最后,使用基于引导滤波的暗通道先验算法对经过光照处理后的图像进行去雾处理,并使用伽马校正函数重新调节亮度不均的图像。主观评价结果表明:提出的煤矿井下非均匀照度图像去噪算法有效抑制了因光照导致整体亮度较高的问题,且由于大雾、粉尘等因素导致图像模糊的部分更加清晰,图像的细节特征更加突出。采用信息熵、均值、标准差、空间频率4种评价指标对提出的算法效果进行客观评价,结果表明,提出的算法在信息熵、均值、标准差、空间频率上较多尺度Retinex(MSR)算法分别平均提升了21.87%,-56.06%,153.43%,294.45%,较基于颜色保持的多尺度视网膜增强(MSRCP)算法分别平均提升了1.18%,-39.56%,33.29%,-4.71%,较带色彩恢复的多尺度视网膜增强(MSRCR)算法分别平均提升了38.06%,-55.27%,462.10%,300.96%,说明提出的算法能更有效地增加图像信息量、抑制光照强度、提升边缘信息及图像清晰度。 展开更多
关键词 综采工作面 煤矿井下图像去噪 非均匀光照 高光抑制 亮度均衡 图像去雾 伽马校正
下载PDF
UN-MANNED WORKING FACE MINING THCHNOLOGY IN DEEPLY INCLINED MIEDIUM TO THICK COAL SEAMS
17
作者 Pn Qinglin ShAndong Provincia Coal Industry Bureau Guo Zhongping, Yong Youling, Shandong Institute of Mining & TechnologyGene Xianwen, Shandong Edutotional Institute of Coal Technology 《China Coal》 1997年第S1期24-25,共2页
关键词 UN-MANNED WORKING face mining THCHNOLOGY IN DEEPLY INCLINED MIEDIUM TO THICK coal SEAMS
原文传递
基于差分非平稳Transformer的液压支架立柱压力预测
18
作者 杨艺 Aimen Malik +1 位作者 袁瑞甫 王科平 《电子测量技术》 北大核心 2024年第6期41-49,共9页
液压支架立柱压力预测是回采工艺决策的重要依据,也是确保围岩稳定的基础信息之一。然而,液压支架立柱压力虽然具有一定的规律性,却无法用简单的数学模型进行预测;且在回采过程中,支架不接顶、顶板破碎、传感器检测误差等带来大量的随... 液压支架立柱压力预测是回采工艺决策的重要依据,也是确保围岩稳定的基础信息之一。然而,液压支架立柱压力虽然具有一定的规律性,却无法用简单的数学模型进行预测;且在回采过程中,支架不接顶、顶板破碎、传感器检测误差等带来大量的随机噪声,使得压力数据劣化为非平稳时间序列,给压力的预测带来的很大的困难。本文在Transformer基础上,提出一种差分非平稳Transformer模型,在Transformer的编码器和解码器中分别引入差分归一化和反归一化操作,以提升序列的平稳性。同时,在Transformer中采用去平稳注意力机制,计算序列元素之间的关联关系,以增强模型的预测能力。在真实的煤矿支架立柱数据集上的对比实验表明,本文提出的差分非平稳Transformer的预测效果达到0.674,表现明显优于LSTM、Transformer和非平稳Transformer模型。 展开更多
关键词 煤矿安全 工作面 液压支架 压力预测 非平稳Transformer 差分
下载PDF
综放工作面围岩控制与智能化放煤技术现状及展望
19
作者 庞义辉 关书方 +2 位作者 姜志刚 白云 李鹏 《工矿自动化》 CSCD 北大核心 2024年第9期20-27,共8页
分析了厚及特厚煤层智能化综放工作面围岩控制技术与智能化放顶煤技术发展现状及存在的问题,从巷道围岩高效支护、工作面超前支护、坚硬特厚顶煤冒放性、液压支架位姿监测及智能化放顶煤5个方面提出了工程实际需求。针对综放工作面实现... 分析了厚及特厚煤层智能化综放工作面围岩控制技术与智能化放顶煤技术发展现状及存在的问题,从巷道围岩高效支护、工作面超前支护、坚硬特厚顶煤冒放性、液压支架位姿监测及智能化放顶煤5个方面提出了工程实际需求。针对综放工作面实现安全、高效、智能化开采存在的技术难题与工程需求,对综放工作面围岩控制技术、智能化放煤技术进行了研究:构建了坚硬特厚煤层顶煤悬臂梁力学模型,研发了提高顶煤冒放性及放出率关键技术,实现了坚硬特厚煤层超大采高综放开采;研发了单元式超前液压支架顶梁可旋转自复位装置,实现了液压支架顶梁根据巷道顶板倾斜角度自动旋转支护,有效提高了单元式超前液压支架对巷道顶底板的适应性;提出了采用巷道支护液压支架替代传统锚网支护结构的思路,具有支护效率高、成本低、节省工作面超前支护等优点;开发了基于立柱与尾梁千斤顶行程的综放液压支架支护姿态监测装置与算法,提高了液压支架支护姿态解算效率与精度;提出了基于透明地质模型、煤量监测装置与煤矸识别装置融合的智能放煤控制方法,可有效解决多夹矸层特厚顶煤智能化放煤技术难题。提出智能地质保障技术、机器视觉精准测量与智能感知技术、综放工作面设备智能精准自适应控制技术、综放工作面数字孪生技术等是智能化综放开采技术与装备的发展趋势。 展开更多
关键词 特厚煤层 综放开采 综放工作面 围岩控制 智能化放煤
下载PDF
基于残差优化的综采工作面煤壁点云补全方法
20
作者 汪卫兵 侯学谦 +3 位作者 赵栓峰 贺海涛 邢志中 路正雄 《工矿自动化》 CSCD 北大核心 2024年第6期120-128,共9页
煤矿综采工作面巷道的数字化三维重建过程中需要完整且密集的煤壁点云数据。受遮挡、视角限制等因素影响,采集的综采工作面煤壁点云数据往往不完整且稀疏,影响下游任务,需进行煤壁点云修复和补全。目前缺少针对井下点云补全任务的数据... 煤矿综采工作面巷道的数字化三维重建过程中需要完整且密集的煤壁点云数据。受遮挡、视角限制等因素影响,采集的综采工作面煤壁点云数据往往不完整且稀疏,影响下游任务,需进行煤壁点云修复和补全。目前缺少针对井下点云补全任务的数据集和网络模型,现有模型用于煤壁点云补全时存在点云密度分布不均匀、点云特征信息丢失等情况。针对上述问题,设计了一种基于残差优化的煤壁点云补全网络模型,采用监督学习方式学习点云特征信息,通过最小化密度采样和残差网络迭代优化输出完整点云。采集煤矿井下真实综采工作面煤壁点云数据,预处理后筛选可用数据,通过模拟随机空洞制作煤壁点云缺失数据集,并用缺失数据集训练基于残差优化的煤壁点云补全网络模型。实验结果表明:与经典的FoldingNet,TopNet,AtlasNet,PCN,3D-Capsule点云补全网络模型相比,基于残差优化的煤壁点云补全网络模型针对构造的缺失煤壁点云和稀疏煤壁点云补全的倒角距离、地移距离及F1分数均能达到最优水平,整体补全效果最佳;针对实际缺失的煤壁点云,该模型能够实现有效补全。 展开更多
关键词 煤矿综采工作面 数字化煤层 巷道三维重建 点云修复 点云补全 残差优化
下载PDF
上一页 1 2 165 下一页 到第
使用帮助 返回顶部