Image-based face pose estimation tries to estimate the facial direction with 2D images.It provides important information for many face recognition applications.However,it is a difficult task due to complex conditions ...Image-based face pose estimation tries to estimate the facial direction with 2D images.It provides important information for many face recognition applications.However,it is a difficult task due to complex conditions and appearances.Deep learning method used in this field has the disadvantage of ignoring the natural structures of human faces.To solve this problem,a framework is proposed in this paper to estimate face poses with regression,which is based on deep learning and multi-modal feature loss(M2FL).Different from current loss functions using only a single type of features,the descriptive power was improved by combining multiple image features.To achieve it,hypergraph-based manifold regularization was applied.In this way,the loss of face pose estimation was reduced.Experimental results on commonly-used benchmark datasets demonstrate the performance of M2FL.展开更多
Face image analysis is one among several important cues in computer vision.Over the last five decades,methods for face analysis have received immense attention due to large scale applications in various face analysis ...Face image analysis is one among several important cues in computer vision.Over the last five decades,methods for face analysis have received immense attention due to large scale applications in various face analysis tasks.Face parsing strongly benefits various human face image analysis tasks inducing face pose estimation.In this paper we propose a 3D head pose estimation framework developed through a prior end to end deep face parsing model.We have developed an end to end face parts segmentation framework through deep convolutional neural networks(DCNNs).For training a deep face parts parsing model,we label face images for seven different classes,including eyes,brows,nose,hair,mouth,skin,and back.We extract features from gray scale images by using DCNNs.We train a classifier using the extracted features.We use the probabilistic classification method to produce gray scale images in the form of probability maps for each dense semantic class.We use a next stage of DCNNs and extract features from grayscale images created as probability maps during the segmentation phase.We assess the performance of our newly proposed model on four standard head pose datasets,including Pointing’04,Annotated Facial Landmarks in the Wild(AFLW),Boston University(BU),and ICT-3DHP,obtaining superior results as compared to previous results.展开更多
Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and pos...Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR).展开更多
Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes...Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.展开更多
针对传统监考存在人工成本高、主观性强等问题,构建基于人脸识别、头部姿态估计和目标检测的智能监考模型。模型通过人脸识别算法进行考生身份验证,设计结合注意力机制的头部姿态估计(channel and spatial-aware wide head pose estimat...针对传统监考存在人工成本高、主观性强等问题,构建基于人脸识别、头部姿态估计和目标检测的智能监考模型。模型通过人脸识别算法进行考生身份验证,设计结合注意力机制的头部姿态估计(channel and spatial-aware wide head pose estimation network,CS-WHENet)方法对考生偷看的异常行为进行检测,并使用深度学习方法及传统方法对考生传递纸条的异常行为进行联合判定。实验结果表明,智能监考模型在模拟真实考场的环境中,对考生身份验证与异常行为检测均有较高的准确率,并能在GPU支持下实现实时检测。通过验证表明,该模型能有效降低监考人员工作成本,实现考场监考公平性。展开更多
基金the National Natural Science Foundation of China(61871464 and 61836002)the Fujian Provincial Natural Science Foundation of China(2018J01573)+1 种基金the Foundation of Fujian Educational Committee(JAT160357)Distinguished Young Scientific Research Talents Plan in Universities of Fujian Province and the Program for New Century Excellent Talents in University of Fujian Province.
文摘Image-based face pose estimation tries to estimate the facial direction with 2D images.It provides important information for many face recognition applications.However,it is a difficult task due to complex conditions and appearances.Deep learning method used in this field has the disadvantage of ignoring the natural structures of human faces.To solve this problem,a framework is proposed in this paper to estimate face poses with regression,which is based on deep learning and multi-modal feature loss(M2FL).Different from current loss functions using only a single type of features,the descriptive power was improved by combining multiple image features.To achieve it,hypergraph-based manifold regularization was applied.In this way,the loss of face pose estimation was reduced.Experimental results on commonly-used benchmark datasets demonstrate the performance of M2FL.
基金supported by National Natural Science Foundation of China(60802069,61273270)the Fundamental Research Funds for the Central Universities of China+1 种基金Natural Science Foundation of Guangdong Province(2014A030313173)Science and Technology Program of Guangzhou(2014Y2-00165,2014J4100114,2014J4100095)
基金Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(2020-0-01592)Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education under Grant(2019R1F1A1058548)and Grant(2020R1G1A1013221).
文摘Face image analysis is one among several important cues in computer vision.Over the last five decades,methods for face analysis have received immense attention due to large scale applications in various face analysis tasks.Face parsing strongly benefits various human face image analysis tasks inducing face pose estimation.In this paper we propose a 3D head pose estimation framework developed through a prior end to end deep face parsing model.We have developed an end to end face parts segmentation framework through deep convolutional neural networks(DCNNs).For training a deep face parts parsing model,we label face images for seven different classes,including eyes,brows,nose,hair,mouth,skin,and back.We extract features from gray scale images by using DCNNs.We train a classifier using the extracted features.We use the probabilistic classification method to produce gray scale images in the form of probability maps for each dense semantic class.We use a next stage of DCNNs and extract features from grayscale images created as probability maps during the segmentation phase.We assess the performance of our newly proposed model on four standard head pose datasets,including Pointing’04,Annotated Facial Landmarks in the Wild(AFLW),Boston University(BU),and ICT-3DHP,obtaining superior results as compared to previous results.
基金supported by the National Natural Science Foundation of China(6137901061772421)
文摘Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR).
基金Project(XDA06020300)supported by the"Strategic Priority Research Program"of the Chinese Academy of SciencesProject(12511501700)supported by the Research on the Key Technology of Internet of Things for Urban Community Safety Based on Video Sensor networks
文摘Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.
文摘针对传统监考存在人工成本高、主观性强等问题,构建基于人脸识别、头部姿态估计和目标检测的智能监考模型。模型通过人脸识别算法进行考生身份验证,设计结合注意力机制的头部姿态估计(channel and spatial-aware wide head pose estimation network,CS-WHENet)方法对考生偷看的异常行为进行检测,并使用深度学习方法及传统方法对考生传递纸条的异常行为进行联合判定。实验结果表明,智能监考模型在模拟真实考场的环境中,对考生身份验证与异常行为检测均有较高的准确率,并能在GPU支持下实现实时检测。通过验证表明,该模型能有效降低监考人员工作成本,实现考场监考公平性。