With the aim of extracting the features of face images in face recognition, a new method of face recognition by fusing global features and local features is presented. The global features are extracted using principal...With the aim of extracting the features of face images in face recognition, a new method of face recognition by fusing global features and local features is presented. The global features are extracted using principal component analysis (PCA). Active appearance model (AAM) locates 58 facial fiducial points, from which 17 points are characterized as local features using the Gabor wavelet transform (GWT). Normalized global match degree (local match degree) can be obtained by global features (local features) of the probe image and each gallery image. After the fusion of normalized global match degree and normalized local match degree, the recognition result is the class that included the gallery image corresponding to the largest fused match degree. The method is evaluated by the recognition rates over two face image databases (AR and SJTU-IPPR). The experimental results show that the method outperforms PCA and elastic bunch graph matching (EBGM). Moreover, it is effective and robust to expression, illumination and pose variation in some degree.展开更多
In the past ten years,research on face recognition has shifted to using 3D facial surfaces,as 3D geometric information provides more discriminative features.This comprehensive survey reviews 3D face recognition techni...In the past ten years,research on face recognition has shifted to using 3D facial surfaces,as 3D geometric information provides more discriminative features.This comprehensive survey reviews 3D face recognition techniques developed in the past decade,both conventional methods and deep learning methods.These methods are evaluated with detailed descriptions of selected representative works.Their advantages and disadvantages are summarized in terms of accuracy,complexity,and robustness to facial variations(expression,pose,occlusion,etc.).A review of 3D face databases is also provided,and a discussion of future research challenges and directions of the topic.展开更多
To investigate the robustness of face recognition algorithms under the complicated variations of illumination, facial expression and posture, the advantages and disadvantages of seven typical algorithms on extracting ...To investigate the robustness of face recognition algorithms under the complicated variations of illumination, facial expression and posture, the advantages and disadvantages of seven typical algorithms on extracting global and local features are studied through the experiments respectively on the Olivetti Research Laboratory database and the other three databases (the three subsets of illumination, expression and posture that are constructed by selecting images from several existing face databases). By taking the above experimental results into consideration, two schemes of face recognition which are based on the decision fusion of the twodimensional linear discriminant analysis (2DLDA) and local binary pattern (LBP) are proposed in this paper to heighten the recognition rates. In addition, partitioning a face nonuniformly for its LBP histograms is conducted to improve the performance. Our experimental results have shown the complementarities of the two kinds of features, the 2DLDA and LBP, and have verified the effectiveness of the proposed fusion algorithms.展开更多
提出利用一种串、并行结合的方式将全局和局部面部特征进行集成:首先利用全局特征进行粗略的匹配,然后再将全局和局部特征集成起来进行精细的确认.在该方法中,全局和局部特征分别采用傅里叶变换和Gabor小波变换进行提取.两个大规模的人...提出利用一种串、并行结合的方式将全局和局部面部特征进行集成:首先利用全局特征进行粗略的匹配,然后再将全局和局部特征集成起来进行精细的确认.在该方法中,全局和局部特征分别采用傅里叶变换和Gabor小波变换进行提取.两个大规模的人脸库(FERET and FRGCv2.0)上的实验结果表明,此方法不仅可以显著提高系统的精度,而且可以提升系统的速度.展开更多
文摘With the aim of extracting the features of face images in face recognition, a new method of face recognition by fusing global features and local features is presented. The global features are extracted using principal component analysis (PCA). Active appearance model (AAM) locates 58 facial fiducial points, from which 17 points are characterized as local features using the Gabor wavelet transform (GWT). Normalized global match degree (local match degree) can be obtained by global features (local features) of the probe image and each gallery image. After the fusion of normalized global match degree and normalized local match degree, the recognition result is the class that included the gallery image corresponding to the largest fused match degree. The method is evaluated by the recognition rates over two face image databases (AR and SJTU-IPPR). The experimental results show that the method outperforms PCA and elastic bunch graph matching (EBGM). Moreover, it is effective and robust to expression, illumination and pose variation in some degree.
文摘In the past ten years,research on face recognition has shifted to using 3D facial surfaces,as 3D geometric information provides more discriminative features.This comprehensive survey reviews 3D face recognition techniques developed in the past decade,both conventional methods and deep learning methods.These methods are evaluated with detailed descriptions of selected representative works.Their advantages and disadvantages are summarized in terms of accuracy,complexity,and robustness to facial variations(expression,pose,occlusion,etc.).A review of 3D face databases is also provided,and a discussion of future research challenges and directions of the topic.
文摘To investigate the robustness of face recognition algorithms under the complicated variations of illumination, facial expression and posture, the advantages and disadvantages of seven typical algorithms on extracting global and local features are studied through the experiments respectively on the Olivetti Research Laboratory database and the other three databases (the three subsets of illumination, expression and posture that are constructed by selecting images from several existing face databases). By taking the above experimental results into consideration, two schemes of face recognition which are based on the decision fusion of the twodimensional linear discriminant analysis (2DLDA) and local binary pattern (LBP) are proposed in this paper to heighten the recognition rates. In addition, partitioning a face nonuniformly for its LBP histograms is conducted to improve the performance. Our experimental results have shown the complementarities of the two kinds of features, the 2DLDA and LBP, and have verified the effectiveness of the proposed fusion algorithms.
文摘提出利用一种串、并行结合的方式将全局和局部面部特征进行集成:首先利用全局特征进行粗略的匹配,然后再将全局和局部特征集成起来进行精细的确认.在该方法中,全局和局部特征分别采用傅里叶变换和Gabor小波变换进行提取.两个大规模的人脸库(FERET and FRGCv2.0)上的实验结果表明,此方法不仅可以显著提高系统的精度,而且可以提升系统的速度.