Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are ...Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.展开更多
Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. Th...Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. The present study introduces the fractal theory into the dynamic research of gas face seals under face?contacting conditions. Structure?Function method is adopted to handle the surface profiles of typical carbon?graphite rings, proving the fractal con?tact model can be used in the field of gas face seals. Using a numerical model established for the dynamic analyses of a spiral groove gas face seal with a flexibly mounted stator, a comparison of dynamic performance between the Majumdar?Bhushan(MB) fractal model and the Chang?Etsion?Bogy(CEB) statistical model is performed. The result shows that the two approaches induce differences in terms of the occurrence and the level of face contact. Although the approach distinctions in film thickness and leakage rate can be tiny, the distinctions in contact mechanism and end face damage are obvious. An investigation of fractal parameters D and G shows that a proper D(nearly 1.5) and a small G are helpful in raising the proportion of elastic deformation to weaken the adhesive wear in the sealing dynamic performance. The proposed research provides a fractal approach to design gas face seals.展开更多
The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face se...The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior(steady-state performance and transient performance) of face seals. A numerical finite element method(FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals.展开更多
It is a difficult task to root the cause of the failure of a gas face seal because different causes may result in similar observations.In the work being presented,the discrimination of multiple types of abnormities in...It is a difficult task to root the cause of the failure of a gas face seal because different causes may result in similar observations.In the work being presented,the discrimination of multiple types of abnormities in a spiral groove gas face seal is studied.A dynamic model is employed to analyze groups of cases in order to uncover the dynamic behaviors when the face contact is induced by different mixtures of abnormities,whose discriminative features when motion and contact are monitored are studied and uncovered.A circumferential-pattern-related oscillation phenomenon is discovered,which is extracted from contact information and implies the relative magnitude of the moment on stator and the rotor tilt.The experimental observation shows consistent results.It means that the grooves(or other circumferential patterns)generate useful informative features for monitoring.These results provide guidance for designing a monitored gas face seal system.展开更多
To improve lubrication effect and seal performance, complicated geometrical hydrodynamic grooves or patterns are often processed on end faces of liquid lubricated mechanical seals. These structures can lead to difficu...To improve lubrication effect and seal performance, complicated geometrical hydrodynamic grooves or patterns are often processed on end faces of liquid lubricated mechanical seals. These structures can lead to difficulties in precisely estimating the seal performance. In this study, an efficient adaptive finite element method (FEM) algorithm with mass conservation was presented, in which a streamline upwind/Petrov-Galerkin (SUPG) weighted residual FEM and a fast iteration algorithm were applied to solve the lubrication equations (Reynolds equation). A mesh adaptation technique was utilized to refine the computation domain based on a residual posterior error estimator. Validation, applicability, and efficiency were verified by comparison among different algorithms and by case studies on seals' faces with different groove structures. The study investigated the influence of the order of shape function and the mesh number on the leakage balance. Mesh refinement occurred mainly in cavitation zones when cavitation happened, otherwise it occurred in regions with a high pressure gradient. Numerical experiments verified that the proposed algorithm is a fast, effective, and accurate method to simulate lubrication problems in the engineering field apart from end face seals.展开更多
Physical models carry quantitative and explainable expert knowledge.However,they have not been introduced into gas face seal diagnosis tasks because of the unacceptable computational cost of inferring the input fault ...Physical models carry quantitative and explainable expert knowledge.However,they have not been introduced into gas face seal diagnosis tasks because of the unacceptable computational cost of inferring the input fault parameters for the observed output or solving the inverse problem of the physical model.The presented work develops a surrogate-model-assisted method for solving the nonlinear inverse problem in limited physical model evaluations.The method prepares a small initial database on sites generated with a Latin hypercube design and then performs an iterative routine that benefits from the rapidity of the surrogate models and the reliability of the physical model.The method is validated on simulated and experimental cases.Results demonstrate that the method can effectively identify the parameters that induce the abnormal signal output with limited physical model evaluations.The presented work provides a quantitative,explainable,and feasible approach for identifying the cause of gas face seal contact.It is also applicable to mechanical devices that face similar difficulties.展开更多
Several spiral groove gas film face seals (SGFS) with different layouts are compared quantitatively to analyze their merits and faults and application behaviors. In addition, a parametric study on downstream mode SGFS...Several spiral groove gas film face seals (SGFS) with different layouts are compared quantitatively to analyze their merits and faults and application behaviors. In addition, a parametric study on downstream mode SGFS is conducted to determine its optimal parameters under certain working conditions. In tne computation of gas film pressure on the face, finite element method (FEM) is applied to adapt to complicated geometrical boundary.展开更多
In ship propeller shaft systems, the shaft seal is a mechanical face seal, which includes a sta-tionary metal seal ring and a rotating ring. The seal faces are deformed with different loads. The deformation of the sea...In ship propeller shaft systems, the shaft seal is a mechanical face seal, which includes a sta-tionary metal seal ring and a rotating ring. The seal faces are deformed with different loads. The deformation of the seal faces affects the performance of mechanical face seals, which leads to water leakage, so the seal face deformation must be analyzed. A mechanics model with deformation equations was developed to describe ship stern-shaft seals. An example was given to verify the deformation equations. The solution of the deformation equations gives a theoretical basis for the analysis of seal leakage and improvements of seal structures.展开更多
The optimization design of the parameters, such as the groove depth, groove number, ratio of the groove width to the land width, and spiral angle of a new kind of double spiral grooves face seal, which works under the...The optimization design of the parameters, such as the groove depth, groove number, ratio of the groove width to the land width, and spiral angle of a new kind of double spiral grooves face seal, which works under the condition of high velocity, high sealing pressure and ultra-low temperature, is presented under the assump-tion of fixed closure force by finite element analysis method. The results show that the stiffness of the maximum film can be obtained when the ratio of the groove width to the land width is 0.5 and the spiral angle is about 75 degrees, when the influence of the groove number on the sealing performance is not obvious.展开更多
Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pre...Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%–25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures.展开更多
基金Supported by National Basic Research Program of China(973 Program,Grant No.2009CB724304)National Key Technology R&D Program(Grant No.2011BAF09B05)National Natural Science Foundation of China(Grant No.50975157)
文摘Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.
基金Supported by China Postdoctoral Science Foundation(Grant No.2017M621458)National Science and Technology Support Plan Projects(Grant No.2015BAA08B02)National Natural Science Foundation of China(Grant No.11632011),National Natural Science Foundation of China(Grant No.11372183)
文摘Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. The present study introduces the fractal theory into the dynamic research of gas face seals under face?contacting conditions. Structure?Function method is adopted to handle the surface profiles of typical carbon?graphite rings, proving the fractal con?tact model can be used in the field of gas face seals. Using a numerical model established for the dynamic analyses of a spiral groove gas face seal with a flexibly mounted stator, a comparison of dynamic performance between the Majumdar?Bhushan(MB) fractal model and the Chang?Etsion?Bogy(CEB) statistical model is performed. The result shows that the two approaches induce differences in terms of the occurrence and the level of face contact. Although the approach distinctions in film thickness and leakage rate can be tiny, the distinctions in contact mechanism and end face damage are obvious. An investigation of fractal parameters D and G shows that a proper D(nearly 1.5) and a small G are helpful in raising the proportion of elastic deformation to weaken the adhesive wear in the sealing dynamic performance. The proposed research provides a fractal approach to design gas face seals.
基金Supported by National Key Basic Research Program of China(973Program,Grant No.2012CB026003)National Science and Technology Major Project of China(Grant No.ZX06901)
文摘The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior(steady-state performance and transient performance) of face seals. A numerical finite element method(FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals.
基金Supported by the National Key R&D Program of China(Grant No.2020YFB2010000)the National Natural Science Foundation of China(Grant No.U1737209).
文摘It is a difficult task to root the cause of the failure of a gas face seal because different causes may result in similar observations.In the work being presented,the discrimination of multiple types of abnormities in a spiral groove gas face seal is studied.A dynamic model is employed to analyze groups of cases in order to uncover the dynamic behaviors when the face contact is induced by different mixtures of abnormities,whose discriminative features when motion and contact are monitored are studied and uncovered.A circumferential-pattern-related oscillation phenomenon is discovered,which is extracted from contact information and implies the relative magnitude of the moment on stator and the rotor tilt.The experimental observation shows consistent results.It means that the grooves(or other circumferential patterns)generate useful informative features for monitoring.These results provide guidance for designing a monitored gas face seal system.
基金Project supported by the National Natural Science Foundation of China (Nos. 51005209 and 51375449)
文摘To improve lubrication effect and seal performance, complicated geometrical hydrodynamic grooves or patterns are often processed on end faces of liquid lubricated mechanical seals. These structures can lead to difficulties in precisely estimating the seal performance. In this study, an efficient adaptive finite element method (FEM) algorithm with mass conservation was presented, in which a streamline upwind/Petrov-Galerkin (SUPG) weighted residual FEM and a fast iteration algorithm were applied to solve the lubrication equations (Reynolds equation). A mesh adaptation technique was utilized to refine the computation domain based on a residual posterior error estimator. Validation, applicability, and efficiency were verified by comparison among different algorithms and by case studies on seals' faces with different groove structures. The study investigated the influence of the order of shape function and the mesh number on the leakage balance. Mesh refinement occurred mainly in cavitation zones when cavitation happened, otherwise it occurred in regions with a high pressure gradient. Numerical experiments verified that the proposed algorithm is a fast, effective, and accurate method to simulate lubrication problems in the engineering field apart from end face seals.
基金This work was supported by the National Key R&D Program of China(Grant No.2020YFB2010000)the National Natural Science Foundation of China(Grant No.U1737209).None of the funding bodies influenced the study at any stage.
文摘Physical models carry quantitative and explainable expert knowledge.However,they have not been introduced into gas face seal diagnosis tasks because of the unacceptable computational cost of inferring the input fault parameters for the observed output or solving the inverse problem of the physical model.The presented work develops a surrogate-model-assisted method for solving the nonlinear inverse problem in limited physical model evaluations.The method prepares a small initial database on sites generated with a Latin hypercube design and then performs an iterative routine that benefits from the rapidity of the surrogate models and the reliability of the physical model.The method is validated on simulated and experimental cases.Results demonstrate that the method can effectively identify the parameters that induce the abnormal signal output with limited physical model evaluations.The presented work provides a quantitative,explainable,and feasible approach for identifying the cause of gas face seal contact.It is also applicable to mechanical devices that face similar difficulties.
文摘Several spiral groove gas film face seals (SGFS) with different layouts are compared quantitatively to analyze their merits and faults and application behaviors. In addition, a parametric study on downstream mode SGFS is conducted to determine its optimal parameters under certain working conditions. In tne computation of gas film pressure on the face, finite element method (FEM) is applied to adapt to complicated geometrical boundary.
基金Supported by the Young Teacher Research Fund of Wuhan University of Technology (No. 2003XJJ127)
文摘In ship propeller shaft systems, the shaft seal is a mechanical face seal, which includes a sta-tionary metal seal ring and a rotating ring. The seal faces are deformed with different loads. The deformation of the seal faces affects the performance of mechanical face seals, which leads to water leakage, so the seal face deformation must be analyzed. A mechanics model with deformation equations was developed to describe ship stern-shaft seals. An example was given to verify the deformation equations. The solution of the deformation equations gives a theoretical basis for the analysis of seal leakage and improvements of seal structures.
文摘The optimization design of the parameters, such as the groove depth, groove number, ratio of the groove width to the land width, and spiral angle of a new kind of double spiral grooves face seal, which works under the condition of high velocity, high sealing pressure and ultra-low temperature, is presented under the assump-tion of fixed closure force by finite element analysis method. The results show that the stiffness of the maximum film can be obtained when the ratio of the groove width to the land width is 0.5 and the spiral angle is about 75 degrees, when the influence of the groove number on the sealing performance is not obvious.
基金Supported by National Natural Science Foundation of China (Grant Nos.51175740,51275473)Ph D Programs Foundation of Ministry of Education of China (Grant No.20103317110002)National Key Basic Research Program of China (973 Program,Grant No.2014CB046404)
文摘Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%–25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures.