The probability of medical staff to get affected from COVID19 is much higher due to their working environment which is more exposed to infectious diseases.So,as a preventive measure the body temperature monitoring of ...The probability of medical staff to get affected from COVID19 is much higher due to their working environment which is more exposed to infectious diseases.So,as a preventive measure the body temperature monitoring of medical staff at regular intervals is highly recommended.Infrared temperature sensing guns have proved its effectiveness and therefore such devices are used to monitor the body temperature.These devices are either used on hands or forehead.As a result,there are many issues in monitoring the temperature of frontline healthcare professionals.Firstly,these healthcare professionals keep wearing PPE(Personal Protective Equipment)kits during working hours and as a result it would be very difficult to monitor their body temperature.Secondly,these healthcare professionals also wear face shields and in such cases monitoring temperature by exposing forehead needs removal of face shield.Doing so after regular intervals is surely uncomfortable for healthcare professionals.To avoid such issues,this paper is disclosing a technologically advanced face shield equipped with sensors capable of monitoring body temperature instantly without the hassle of removing the face shield.This face shield is integrated with a built-in infrared temperature sensor.A total of 10 such face shields were printed and assembled within the university lab and then handed over to a group of ten members including faculty and students of nursing and health science department.This sequence was repeated four times and as a result 40 healthcare workers participated in the study.Thereafter,feedback analysis was conducted on questionnaire data and found a significant overall mean score of 4.59 out of 5 which indicates that the product is effective and worthy in every facet.Stress analysis is also performed in the simulated environment and found that the device can easily withstand the typically applied forces.The limitations of this product are difficulty in cleaning the product and comparatively high cost due to the deployment of electronic equipment.展开更多
During the COVID-19 pandemic, personal protective equipment (PPE) has become crucial to protect humans from the transmission of the virus. The face shield is a simple and effective PPE to prevent the viral and bacteri...During the COVID-19 pandemic, personal protective equipment (PPE) has become crucial to protect humans from the transmission of the virus. The face shield is a simple and effective PPE to prevent the viral and bacterial contact. Since COVID-19 is known to be spread via respiratory droplets, the face shield has become increasingly important PPE. However, the common materials used in face shields are synthetic, environmentally unfriendly polymers, which cause an accumulation of plastic waste once disposed. Cellulose acetate (CA) can be used as an alternative for face shield films due to its ability to decompose safely in the environment;however, pristine CA cannot serve as an effective face shield due to its low hydrophobicity. In this research, the somewhat hydrophilic character of CA with a water contact angle of 55<span style="white-space:nowrap;">°</span> is experimented on: hexamethyldisilazane (HMDS) is utilized to improve the hydrophobicity of CA up to a water contact angle of 77<span style="white-space:nowrap;">°</span>. After the oxidization of the surface of CA via oxygen plasma, implementing HMDS shows a significant increase in hydrophobicity of the film.展开更多
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ...To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.展开更多
In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of...In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of active collapse and passive extrusion were considered,and a seismic reliability model of shield tunnel faces under multifailure mode was established.The limit analysis method and the response surface method(RSM)were used together to solve the reliability of shield tunnel faces subjected to seismic action.Comparing with existing results,the results of this work are effective.The effects of seismic load and rock mass strength on the collapse pressure,extrusion pressure and reliability index were discussed,and reasonable ranges of support pressure of shield tunnel faces under seismic action were presented.This method can provide a new idea for solving the shield thrust parameter under the seismic loading.展开更多
基金supported by Taif University Researchers Supporting Project number(TURSP-2020/347),Taif University,Taif,Saudi Arabia.
文摘The probability of medical staff to get affected from COVID19 is much higher due to their working environment which is more exposed to infectious diseases.So,as a preventive measure the body temperature monitoring of medical staff at regular intervals is highly recommended.Infrared temperature sensing guns have proved its effectiveness and therefore such devices are used to monitor the body temperature.These devices are either used on hands or forehead.As a result,there are many issues in monitoring the temperature of frontline healthcare professionals.Firstly,these healthcare professionals keep wearing PPE(Personal Protective Equipment)kits during working hours and as a result it would be very difficult to monitor their body temperature.Secondly,these healthcare professionals also wear face shields and in such cases monitoring temperature by exposing forehead needs removal of face shield.Doing so after regular intervals is surely uncomfortable for healthcare professionals.To avoid such issues,this paper is disclosing a technologically advanced face shield equipped with sensors capable of monitoring body temperature instantly without the hassle of removing the face shield.This face shield is integrated with a built-in infrared temperature sensor.A total of 10 such face shields were printed and assembled within the university lab and then handed over to a group of ten members including faculty and students of nursing and health science department.This sequence was repeated four times and as a result 40 healthcare workers participated in the study.Thereafter,feedback analysis was conducted on questionnaire data and found a significant overall mean score of 4.59 out of 5 which indicates that the product is effective and worthy in every facet.Stress analysis is also performed in the simulated environment and found that the device can easily withstand the typically applied forces.The limitations of this product are difficulty in cleaning the product and comparatively high cost due to the deployment of electronic equipment.
文摘During the COVID-19 pandemic, personal protective equipment (PPE) has become crucial to protect humans from the transmission of the virus. The face shield is a simple and effective PPE to prevent the viral and bacterial contact. Since COVID-19 is known to be spread via respiratory droplets, the face shield has become increasingly important PPE. However, the common materials used in face shields are synthetic, environmentally unfriendly polymers, which cause an accumulation of plastic waste once disposed. Cellulose acetate (CA) can be used as an alternative for face shield films due to its ability to decompose safely in the environment;however, pristine CA cannot serve as an effective face shield due to its low hydrophobicity. In this research, the somewhat hydrophilic character of CA with a water contact angle of 55<span style="white-space:nowrap;">°</span> is experimented on: hexamethyldisilazane (HMDS) is utilized to improve the hydrophobicity of CA up to a water contact angle of 77<span style="white-space:nowrap;">°</span>. After the oxidization of the surface of CA via oxygen plasma, implementing HMDS shows a significant increase in hydrophobicity of the film.
基金Project([2018]3010)supported by the Guizhou Provincial Science and Technology Major Project,China。
文摘To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.
基金Projects(51804113,52074116)supported by the National Natural Science Foundation of ChinaProject(2020M682563)supported by the China Postdoctoral Science Foundation+1 种基金Project(19C0743)supported by the Scientific Research Foundation of Hunan Provincial Education Department,ChinaProject(E52076)supported by the Science Foundation of Hunan University of Science and Technology,China。
文摘In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of active collapse and passive extrusion were considered,and a seismic reliability model of shield tunnel faces under multifailure mode was established.The limit analysis method and the response surface method(RSM)were used together to solve the reliability of shield tunnel faces subjected to seismic action.Comparing with existing results,the results of this work are effective.The effects of seismic load and rock mass strength on the collapse pressure,extrusion pressure and reliability index were discussed,and reasonable ranges of support pressure of shield tunnel faces under seismic action were presented.This method can provide a new idea for solving the shield thrust parameter under the seismic loading.