Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”k...Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”kernel size of the convolutional operator,for the spatially dense patterns,such as the generic face images,the performance of CNNs is limited.Here,we propose a“non-local”model,termed the Speckle-Transformer(SpT)UNet,for speckle feature extraction of generic face images.It is worth noting that the lightweight SpT UNet reveals a high efficiency and strong comparative performance with Pearson Correlation Coefficient(PCC),and structural similarity measure(SSIM)exceeding 0.989,and 0.950,respectively.展开更多
In this paper, we proposed a combined PCA-LPP algorithm toimprove 3D face reconstruction performance. Principal component analysis(PCA) is commonly used to compress images and extract features. Onedisadvantage of PCA ...In this paper, we proposed a combined PCA-LPP algorithm toimprove 3D face reconstruction performance. Principal component analysis(PCA) is commonly used to compress images and extract features. Onedisadvantage of PCA is local feature loss. To address this, various studies haveproposed combining a PCA-LPP-based algorithm with a locality preservingprojection (LPP). However, the existing PCA-LPP method is unsuitable for3D face reconstruction because it focuses on data classification and clustering.In the existing PCA-LPP, the adjacency graph, which primarily shows the connectionrelationships between data, is composed of the e-or k-nearest neighbortechniques. By contrast, in this study, complex and detailed parts, such aswrinkles around the eyes and mouth, can be reconstructed by composing thetopology of the 3D face model as an adjacency graph and extracting localfeatures from the connection relationship between the 3D model vertices.Experiments verified the effectiveness of the proposed method. When theproposed method was applied to the 3D face reconstruction evaluation set,a performance improvement of 10% to 20% was observed compared with theexisting PCA-based method.展开更多
In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation...In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation-based image patch clustering and principal component analysis is used to obtain a series of geometric dictionaries of different orientations in the dictionary learning process. Subsequently, the dictionary of the nearest orientation is adaptively assigned to each of the input patches that need to be represented in the sparse coding process. Moreover, the consistency of gradients is further incorporated into the basic framework to make more substantial progress in preserving more fine edges and producing sharper results. Two groups of experiments on different types of natural images indicate that the proposed method outperforms some state-of- the-art counterparts in terms of both numerical indicators and visual quality.展开更多
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F...A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.展开更多
A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the co...A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the constraint of the patched-based reconstruction, and compensating residual errors of the reconstruction results both locally and globally to solve the distortion problem in patch-based reconstruction algorithms. Three reconstruction algorithms are compared. The results show that the images reconstructed with the new algorithm have the best quality.展开更多
A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite ima...A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method.展开更多
A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper,which consists of three steps to avoid the computational complexity: a single image SR re...A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper,which consists of three steps to avoid the computational complexity: a single image SR reconstruction step,a registration step and a wavelet-based image fusion. This algorithm decomposes two large matrixes to the tensor product of two little matrixes and uses the natural isomorphism between matrix space and vector space to transform cost function based on matrix-vector products model to matrix form. Furthermore,we prove that the regularization part can be transformed to the matrix formed. The conjugate-gradient method is used to solve this new model. Finally,the wavelet fusion is used to integrate all the registered highresolution images obtained from the single image SR reconstruction step. The proposed algorithm reduces the storage requirement and the calculating complexity,and can be applied to large-dimension low-resolution images.展开更多
This letter proposes a novel method of compressed video super-resolution reconstruction based on MAP-POCS (Maximum Posterior Probability-Projection Onto Convex Set). At first assuming the high-resolution model subject...This letter proposes a novel method of compressed video super-resolution reconstruction based on MAP-POCS (Maximum Posterior Probability-Projection Onto Convex Set). At first assuming the high-resolution model subject to Poisson-Markov distribution, then constructing the projecting convex based on MAP. According to the characteristics of compressed video, two different convexes are constructed based on integrating the inter-frame and intra-frame information in the wavelet-domain. The results of the experiment demonstrate that the new method not only outperforms the traditional algorithms on the aspects of PSNR (Peak Signal-to-Noise Ratio), MSE (Mean Square Error) and reconstruction vision effect, but also has the advantages of rapid convergence and easy extension.展开更多
MS or MS+PAN is usually applied separately in convolutional neural network(CNN)resolution reconstruction to obtain high-resolution MS images,but the difference between the two datasets is rarely studied.This paper int...MS or MS+PAN is usually applied separately in convolutional neural network(CNN)resolution reconstruction to obtain high-resolution MS images,but the difference between the two datasets is rarely studied.This paper introduced a dual-channel network and took MS and MS+PAN of Jilin-1 spectrum satellites as two datasets to evaluate the performance of CNN resolution reconstruction,and analyzed the difference with bicubic and GS methods.The result of CNN reconstruction shows that MS+PAN dataset performed better than MS,with about 6%improvement in spatial and spectral components,and the overall quality of MS+PAN dataset was slightly higher than that of MS dataset,with QNR from 0.9559 to 0.9584.The bicubic performed best in spectral components with the quality value of 0.017,and GS performed best in spatial components with the quality values of 0.0443.CNN showed similar performance in spectral and spatial components with the two traditional methods and achieved the best overall quality with QNR value of 0.9584.展开更多
Super-resolution reconstruction in medical imaging has become more demanding due to the necessity of obtaining high-quality images with minimal radiation dose,such as in low-field magnetic resonance imaging(MRI).Howev...Super-resolution reconstruction in medical imaging has become more demanding due to the necessity of obtaining high-quality images with minimal radiation dose,such as in low-field magnetic resonance imaging(MRI).However,image super-resolution reconstruction remains a difficult task because of the complexity and high textual requirements for diagnosis purpose.In this paper,we offer a deep learning based strategy for reconstructing medical images from low resolutions utilizing Transformer and generative adversarial networks(T-GANs).The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction.Furthermore,we weighted the combination of content loss,adversarial loss,and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN.In comparison to established measures like peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM),our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.展开更多
The algorithm used for reconstruction or resolution enhancement is one of the factors affectingthe quality of super-resolution images obtained by fluorescence microscopy.Deep-learning-basedalgorithms have achieved sta...The algorithm used for reconstruction or resolution enhancement is one of the factors affectingthe quality of super-resolution images obtained by fluorescence microscopy.Deep-learning-basedalgorithms have achieved stateof-the-art performance in super-resolution fluorescence micros-copy and are becoming increasingly attractive.We firstly introduce commonly-used deep learningmodels,and then review the latest applications in terms of the net work architectures,the trainingdata and the loss functions.Additionally,we discuss the challenges and limits when using deeplearning to analyze the fluorescence microscopic data,and suggest ways to improve the reliability and robustness of deep learning applications.展开更多
Recently, neighbor embedding based face super-resolution(SR) methods have shown the ability for achieving high-quality face images, those methods are based on the assumption that the same neighborhoods are preserved i...Recently, neighbor embedding based face super-resolution(SR) methods have shown the ability for achieving high-quality face images, those methods are based on the assumption that the same neighborhoods are preserved in both low-resolution(LR) training set and high-resolution(HR) training set. However, due to the "one-to-many" mapping between the LR image and HR ones in practice, the neighborhood relationship of the LR patch in LR space is quite different with that of the HR counterpart, that is to say the neighborhood relationship obtained is not true. In this paper, we explore a novel and effective re-identified K-nearest neighbor(RIKNN) method to search neighbors of LR patch. Compared with other methods, our method uses the geometrical information of LR manifold and HR manifold simultaneously. In particular, it searches K-NN of LR patch in the LR space and refines the searching results by re-identifying in the HR space, thus giving rise to accurate K-NN and improved performance. A statistical analysis of the influence of the training set size and nearest neighbor number is given, experimental results on some public face databases show the superiority of our proposed scheme over state-of-the-art face hallucination approaches in terms of subjective and objective results as well as computational complexity.展开更多
In this paper, we propose a highly automatic approach for 3D photorealistic face reconstruction from a single frontal image. The key point of our work is the implementation of adaptive manifold learning approach. Befo...In this paper, we propose a highly automatic approach for 3D photorealistic face reconstruction from a single frontal image. The key point of our work is the implementation of adaptive manifold learning approach. Beforehand, an active appearance model (AAM) is trained for automatic feature extraction and adaptive locally linear embedding (ALLE) algorithm is utilized to reduce the dimensionality of the 3D database. Then, given an input frontal face image, the corresponding weights between 3D samples and the image are synthesized adaptively according to the AAM selected facial features. Finally, geometry reconstruction is achieved by linear weighted combination of adaptively selected samples. Radial basis function (RBF) is adopted to map facial texture from the frontal image to the reconstructed face geometry. The texture of invisible regions between the face and the ears is interpolated by sampling from the frontal image. This approach has several advantages: (1) Only a single frontal face image is needed for highly automatic face reconstruction; (2) Compared with former works, our reconstruction approach provides higher accuracy; (3) Constraint based RBF texture mapping provides natural appearance for reconstructed face.展开更多
Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the sim...Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled.This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.Methods First,we transferred an input real-world portrait to a stylized cartoon image using StyleGAN.We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture.Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision.Finally,we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.Conclusions Compared with prior arts,the qualitative and quantitative results show that our method achieves better accuracy,aesthetics,and similarity criteria.Furthermore,we demonstrated the capability of the proposed 3D model for real-time facial animation.展开更多
Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound seg...Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D.展开更多
Introduction: Significant trauma to the periocular region can seriously damage ocular structures and their adnexa. The eyelids can be damaged during these traumas. The most frequent lesions are lacerations, the surgic...Introduction: Significant trauma to the periocular region can seriously damage ocular structures and their adnexa. The eyelids can be damaged during these traumas. The most frequent lesions are lacerations, the surgical treatment of which is generally simple. In some cases, there are complex traumas where there is a loss of tissue, which is difficult to treat. We report the case of a 26-year-old young man, farmer with no medical and surgical history, referred by the odontostomatology and maxillofacial surgery department for burns to the left hemi face by the exhaust pipe of his motorbike which occurred following a public road accident (AVP). Observation: A 26-year-old young man with no medical-surgical history, visual acuity was 5/10 with good mobility of the globe. In collaboration with the maxillofacial surgeon, a graft of the hemi face was performed using a flap from the inner side of the thigh first. In the second time we carried out a recovery by a flap which consisted in taking a supra-superciliary flap and suturing it at the level of the palpebral edges which, in spite of a fragile vitality of the tissues. Conclusion: The reconstruction of the eyelid is a real problem in our service because of the technical platform and the availability of consumables, which limits us in the choice of the operating technique.展开更多
Objective:To investigate the outcomes of subcutaneous island pedicle flap for reconstruction of the medium-sized facial skin defects. Methods: Eighty nine cases of facial defects within one cosmetic unit following rem...Objective:To investigate the outcomes of subcutaneous island pedicle flap for reconstruction of the medium-sized facial skin defects. Methods: Eighty nine cases of facial defects within one cosmetic unit following removal of skin tumors or scars were reconstructed with advancement or transposition island pedicle flaps. Patient records and postoperative photographs were reviewed retrospectively. Both patients and other surgeons were asked to assess outcome variables. Results: All flaps survived with primary healing postoperatively. Patients and surgeons judged excellent or good overall outcomes in 95. 5% and 92. 7% of all evaluated cases, respectively. Conclusion: The subcutaneous island pedicle flap may be an extremely versatile and reliable method for aesthetic reconstruction of medium-sized facial defects in the patients of all time of life.展开更多
Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water a...Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results.展开更多
The image reconstruction process in super-resolution structured illumination microscopy(SIM)is investigated.The structured pattern is generated by the interference of two Gaussian beams to encode undetectable spectra ...The image reconstruction process in super-resolution structured illumination microscopy(SIM)is investigated.The structured pattern is generated by the interference of two Gaussian beams to encode undetectable spectra into detectable region of microscope.After parameters estimation of the structured pattern,the encoded spectra are computationally decoded and recombined in Fourier domain to equivalently increase the cut-off frequency of microscope,resulting in the extension of detectable spectra and a reconstructed image with about two-fold enhanced resolution.Three di®erent methods to estimate the initial phase of structured pattern are compared,verifying the auto-correlation algorithm a®ords the fast,most precise and robust measurement.The artifacts sources and detailed reconstruction°owchart for both linear and nonlinear SIM are also presented.展开更多
Structured illumination microscopy has been a useful method for achieving lateral super-resolution,but it typically requires at least three precise phase shifts per orientation.In this paper,we propose a super-resolut...Structured illumination microscopy has been a useful method for achieving lateral super-resolution,but it typically requires at least three precise phase shifts per orientation.In this paper,we propose a super-resolution method that utilizes structured illumination without phase shift.The reconstruction process requires only a conventionally illuminated image and an image with structured illumination.This method achieves the same effect as the traditional phase shift method,and more than doubles the resolution by synthesizing a few reconstructions at different illumination frequencies.We verify the resolution improvement process using a combination of theoretical derivations and diagrams,and demonstrate its effectiveness with numerical simulations.展开更多
基金funding support from the Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1100500)the Shanghai Frontiers Science Center Program(2021-2025 No.20)+2 种基金the Zhangjiang National Innovation Demonstration Zone(Grant No.ZJ2019ZD-005)supported by a fellowship from the China Postdoctoral Science Foundation(2020M671169)the International Postdoctoral Exchange Program from the Administrative Committee of Post-Doctoral Researchers of China([2020]33)。
文摘Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”kernel size of the convolutional operator,for the spatially dense patterns,such as the generic face images,the performance of CNNs is limited.Here,we propose a“non-local”model,termed the Speckle-Transformer(SpT)UNet,for speckle feature extraction of generic face images.It is worth noting that the lightweight SpT UNet reveals a high efficiency and strong comparative performance with Pearson Correlation Coefficient(PCC),and structural similarity measure(SSIM)exceeding 0.989,and 0.950,respectively.
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Education(2021R1I1A3058103).
文摘In this paper, we proposed a combined PCA-LPP algorithm toimprove 3D face reconstruction performance. Principal component analysis(PCA) is commonly used to compress images and extract features. Onedisadvantage of PCA is local feature loss. To address this, various studies haveproposed combining a PCA-LPP-based algorithm with a locality preservingprojection (LPP). However, the existing PCA-LPP method is unsuitable for3D face reconstruction because it focuses on data classification and clustering.In the existing PCA-LPP, the adjacency graph, which primarily shows the connectionrelationships between data, is composed of the e-or k-nearest neighbortechniques. By contrast, in this study, complex and detailed parts, such aswrinkles around the eyes and mouth, can be reconstructed by composing thetopology of the 3D face model as an adjacency graph and extracting localfeatures from the connection relationship between the 3D model vertices.Experiments verified the effectiveness of the proposed method. When theproposed method was applied to the 3D face reconstruction evaluation set,a performance improvement of 10% to 20% was observed compared with theexisting PCA-based method.
基金The National Natural Science Foundation of China(No.61374194,No.61403081)the National Key Science&Technology Pillar Program of China(No.2014BAG01B03)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20140638)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation-based image patch clustering and principal component analysis is used to obtain a series of geometric dictionaries of different orientations in the dictionary learning process. Subsequently, the dictionary of the nearest orientation is adaptively assigned to each of the input patches that need to be represented in the sparse coding process. Moreover, the consistency of gradients is further incorporated into the basic framework to make more substantial progress in preserving more fine edges and producing sharper results. Two groups of experiments on different types of natural images indicate that the proposed method outperforms some state-of- the-art counterparts in terms of both numerical indicators and visual quality.
基金Project(2008041001) supported by the Academician Foundation of China Project(N0601-041) supported by the General Armament Department Science Foundation of China
文摘A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.
基金Supported by the Basic Research Foundation of Beijing Institute of Technology(3050012211105)
文摘A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the constraint of the patched-based reconstruction, and compensating residual errors of the reconstruction results both locally and globally to solve the distortion problem in patch-based reconstruction algorithms. Three reconstruction algorithms are compared. The results show that the images reconstructed with the new algorithm have the best quality.
文摘A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60474016)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2009046)
文摘A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper,which consists of three steps to avoid the computational complexity: a single image SR reconstruction step,a registration step and a wavelet-based image fusion. This algorithm decomposes two large matrixes to the tensor product of two little matrixes and uses the natural isomorphism between matrix space and vector space to transform cost function based on matrix-vector products model to matrix form. Furthermore,we prove that the regularization part can be transformed to the matrix formed. The conjugate-gradient method is used to solve this new model. Finally,the wavelet fusion is used to integrate all the registered highresolution images obtained from the single image SR reconstruction step. The proposed algorithm reduces the storage requirement and the calculating complexity,and can be applied to large-dimension low-resolution images.
基金Supported by the Natural Science Foundation of Jiangsu Province (No. BK2004151).
文摘This letter proposes a novel method of compressed video super-resolution reconstruction based on MAP-POCS (Maximum Posterior Probability-Projection Onto Convex Set). At first assuming the high-resolution model subject to Poisson-Markov distribution, then constructing the projecting convex based on MAP. According to the characteristics of compressed video, two different convexes are constructed based on integrating the inter-frame and intra-frame information in the wavelet-domain. The results of the experiment demonstrate that the new method not only outperforms the traditional algorithms on the aspects of PSNR (Peak Signal-to-Noise Ratio), MSE (Mean Square Error) and reconstruction vision effect, but also has the advantages of rapid convergence and easy extension.
文摘MS or MS+PAN is usually applied separately in convolutional neural network(CNN)resolution reconstruction to obtain high-resolution MS images,but the difference between the two datasets is rarely studied.This paper introduced a dual-channel network and took MS and MS+PAN of Jilin-1 spectrum satellites as two datasets to evaluate the performance of CNN resolution reconstruction,and analyzed the difference with bicubic and GS methods.The result of CNN reconstruction shows that MS+PAN dataset performed better than MS,with about 6%improvement in spatial and spectral components,and the overall quality of MS+PAN dataset was slightly higher than that of MS dataset,with QNR from 0.9559 to 0.9584.The bicubic performed best in spectral components with the quality value of 0.017,and GS performed best in spatial components with the quality values of 0.0443.CNN showed similar performance in spectral and spatial components with the two traditional methods and achieved the best overall quality with QNR value of 0.9584.
文摘Super-resolution reconstruction in medical imaging has become more demanding due to the necessity of obtaining high-quality images with minimal radiation dose,such as in low-field magnetic resonance imaging(MRI).However,image super-resolution reconstruction remains a difficult task because of the complexity and high textual requirements for diagnosis purpose.In this paper,we offer a deep learning based strategy for reconstructing medical images from low resolutions utilizing Transformer and generative adversarial networks(T-GANs).The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction.Furthermore,we weighted the combination of content loss,adversarial loss,and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN.In comparison to established measures like peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM),our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.
基金supported by the National Key R&D Program of China(2021YFF0502900)the National Natural Science Foundation of China(61835009/62127819).
文摘The algorithm used for reconstruction or resolution enhancement is one of the factors affectingthe quality of super-resolution images obtained by fluorescence microscopy.Deep-learning-basedalgorithms have achieved stateof-the-art performance in super-resolution fluorescence micros-copy and are becoming increasingly attractive.We firstly introduce commonly-used deep learningmodels,and then review the latest applications in terms of the net work architectures,the trainingdata and the loss functions.Additionally,we discuss the challenges and limits when using deeplearning to analyze the fluorescence microscopic data,and suggest ways to improve the reliability and robustness of deep learning applications.
基金supported by the National Natural Science Foundation of China(61172173,61303114,61271256,61272544,U1304615,U1404618)the National High Technology Research and Development Program of China(863 Program)No.2013AA014602
文摘Recently, neighbor embedding based face super-resolution(SR) methods have shown the ability for achieving high-quality face images, those methods are based on the assumption that the same neighborhoods are preserved in both low-resolution(LR) training set and high-resolution(HR) training set. However, due to the "one-to-many" mapping between the LR image and HR ones in practice, the neighborhood relationship of the LR patch in LR space is quite different with that of the HR counterpart, that is to say the neighborhood relationship obtained is not true. In this paper, we explore a novel and effective re-identified K-nearest neighbor(RIKNN) method to search neighbors of LR patch. Compared with other methods, our method uses the geometrical information of LR manifold and HR manifold simultaneously. In particular, it searches K-NN of LR patch in the LR space and refines the searching results by re-identifying in the HR space, thus giving rise to accurate K-NN and improved performance. A statistical analysis of the influence of the training set size and nearest neighbor number is given, experimental results on some public face databases show the superiority of our proposed scheme over state-of-the-art face hallucination approaches in terms of subjective and objective results as well as computational complexity.
基金Project supported by the National Natural Science Foundation of China (Nos. 60533090, 60525108)the National Basic Research Program (973) of China (No. 2002CB312101)+1 种基金the Science and Technology Project of Zhejiang Province, China (Nos. 2005C13032, 2005C11001-05)China-US Million Book Digital Library Project
文摘In this paper, we propose a highly automatic approach for 3D photorealistic face reconstruction from a single frontal image. The key point of our work is the implementation of adaptive manifold learning approach. Beforehand, an active appearance model (AAM) is trained for automatic feature extraction and adaptive locally linear embedding (ALLE) algorithm is utilized to reduce the dimensionality of the 3D database. Then, given an input frontal face image, the corresponding weights between 3D samples and the image are synthesized adaptively according to the AAM selected facial features. Finally, geometry reconstruction is achieved by linear weighted combination of adaptively selected samples. Radial basis function (RBF) is adopted to map facial texture from the frontal image to the reconstructed face geometry. The texture of invisible regions between the face and the ears is interpolated by sampling from the frontal image. This approach has several advantages: (1) Only a single frontal face image is needed for highly automatic face reconstruction; (2) Compared with former works, our reconstruction approach provides higher accuracy; (3) Constraint based RBF texture mapping provides natural appearance for reconstructed face.
文摘Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled.This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.Methods First,we transferred an input real-world portrait to a stylized cartoon image using StyleGAN.We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture.Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision.Finally,we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.Conclusions Compared with prior arts,the qualitative and quantitative results show that our method achieves better accuracy,aesthetics,and similarity criteria.Furthermore,we demonstrated the capability of the proposed 3D model for real-time facial animation.
文摘Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D.
文摘Introduction: Significant trauma to the periocular region can seriously damage ocular structures and their adnexa. The eyelids can be damaged during these traumas. The most frequent lesions are lacerations, the surgical treatment of which is generally simple. In some cases, there are complex traumas where there is a loss of tissue, which is difficult to treat. We report the case of a 26-year-old young man, farmer with no medical and surgical history, referred by the odontostomatology and maxillofacial surgery department for burns to the left hemi face by the exhaust pipe of his motorbike which occurred following a public road accident (AVP). Observation: A 26-year-old young man with no medical-surgical history, visual acuity was 5/10 with good mobility of the globe. In collaboration with the maxillofacial surgeon, a graft of the hemi face was performed using a flap from the inner side of the thigh first. In the second time we carried out a recovery by a flap which consisted in taking a supra-superciliary flap and suturing it at the level of the palpebral edges which, in spite of a fragile vitality of the tissues. Conclusion: The reconstruction of the eyelid is a real problem in our service because of the technical platform and the availability of consumables, which limits us in the choice of the operating technique.
文摘Objective:To investigate the outcomes of subcutaneous island pedicle flap for reconstruction of the medium-sized facial skin defects. Methods: Eighty nine cases of facial defects within one cosmetic unit following removal of skin tumors or scars were reconstructed with advancement or transposition island pedicle flaps. Patient records and postoperative photographs were reviewed retrospectively. Both patients and other surgeons were asked to assess outcome variables. Results: All flaps survived with primary healing postoperatively. Patients and surgeons judged excellent or good overall outcomes in 95. 5% and 92. 7% of all evaluated cases, respectively. Conclusion: The subcutaneous island pedicle flap may be an extremely versatile and reliable method for aesthetic reconstruction of medium-sized facial defects in the patients of all time of life.
基金This work is supported by Hainan Provincial Natural Science Foundation of China(project number:20166235)project supported by the Education Department of Hainan Province(project number:Hnky2017-57).
文摘Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results.
基金This work is supported by National Natural Science Foundation of China (Nos.61361160418 and 61327902).
文摘The image reconstruction process in super-resolution structured illumination microscopy(SIM)is investigated.The structured pattern is generated by the interference of two Gaussian beams to encode undetectable spectra into detectable region of microscope.After parameters estimation of the structured pattern,the encoded spectra are computationally decoded and recombined in Fourier domain to equivalently increase the cut-off frequency of microscope,resulting in the extension of detectable spectra and a reconstructed image with about two-fold enhanced resolution.Three di®erent methods to estimate the initial phase of structured pattern are compared,verifying the auto-correlation algorithm a®ords the fast,most precise and robust measurement.The artifacts sources and detailed reconstruction°owchart for both linear and nonlinear SIM are also presented.
基金supported by the National Natural Science Foundation of China(Grant No.51775381)National Key Scientific Instrument and Equipment Development Project(Grant No.2017YFF0107001)
文摘Structured illumination microscopy has been a useful method for achieving lateral super-resolution,but it typically requires at least three precise phase shifts per orientation.In this paper,we propose a super-resolution method that utilizes structured illumination without phase shift.The reconstruction process requires only a conventionally illuminated image and an image with structured illumination.This method achieves the same effect as the traditional phase shift method,and more than doubles the resolution by synthesizing a few reconstructions at different illumination frequencies.We verify the resolution improvement process using a combination of theoretical derivations and diagrams,and demonstrate its effectiveness with numerical simulations.