In order to analyze the influence of setting error of tool on both tooth profile and contact characteristic of orthogonal face gear drive,the coordinate systems with and without setting error are established.Moreover,...In order to analyze the influence of setting error of tool on both tooth profile and contact characteristic of orthogonal face gear drive,the coordinate systems with and without setting error are established.Moreover,the equations of tooth profile and contact points of face gear drive are derived by envelope principle.According to the equations,the change of tooth profile and the contact points position on face gear are analyzed.The tooth surface and contact points are obtained by numerical simulation.Results show that the tooth profile and contact characteristic of face gear drive are not sensitive to the setting error of tool.展开更多
According to the principle of meshing engagement and the theory of the digitized conjugate surface, this paper applies the software Conjugater-1.0 that is developed by ourselves to compute, respectively, the digitized...According to the principle of meshing engagement and the theory of the digitized conjugate surface, this paper applies the software Conjugater-1.0 that is developed by ourselves to compute, respectively, the digitized conjugate curved surfaces of the straight-tooth surface and drum-tooth surface, which will establish the theoretical and technical foundation for digitized engaging analysis, simulation, and digitized manufacturing technology of the diversified gears.展开更多
In order to improve the machining efficiency of the dish wheel grinding face gear, two changes are proposed:a disk wheel grinding face gear with a long radius and a multi-axis movement optimization method for tooth su...In order to improve the machining efficiency of the dish wheel grinding face gear, two changes are proposed:a disk wheel grinding face gear with a long radius and a multi-axis movement optimization method for tooth surface correction. Based on the grinding principle of face gears, the equation of the long radius disk wheel is deduced. Based on the structure of the machining tool, the tooth surface equations of the face gear shaped by the long radius disk wheel are established. Furthermore, an optimization model of face gear tooth surface correction is established, and the machine tool motion optimization of face gear tooth surface correction is completed;Finally, a long radius disk wheel grinding face gear test is performed. After the face gear tooth surface correction, the maximum value of the tooth surface deviation is reduced from 180 μm to 16 μm which verified the correctness of the machining method.展开更多
Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gea...Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gear teeth.Thus,a calculation solution of mesh stiffness of face gear drives with a spur gear,which is based on the proposed equivalent face gear teeth and Ishikawa model,is constructed,and the influence of contact effects on mesh stiffness of face gear drives is investigated.The results indicate the mesh stiffness of face gear drives is sensitive to contact effects under heavy loaded operating conditions,specially.These contributions will benefit to improve dynamic studies of face gear drives.展开更多
基金Supported by the National Natural Science Foundation of China(51105194)the Scientific Research Funding of Nanjing University of Aeronautics and Astronautics(NP2011014)
文摘In order to analyze the influence of setting error of tool on both tooth profile and contact characteristic of orthogonal face gear drive,the coordinate systems with and without setting error are established.Moreover,the equations of tooth profile and contact points of face gear drive are derived by envelope principle.According to the equations,the change of tooth profile and the contact points position on face gear are analyzed.The tooth surface and contact points are obtained by numerical simulation.Results show that the tooth profile and contact characteristic of face gear drive are not sensitive to the setting error of tool.
文摘According to the principle of meshing engagement and the theory of the digitized conjugate surface, this paper applies the software Conjugater-1.0 that is developed by ourselves to compute, respectively, the digitized conjugate curved surfaces of the straight-tooth surface and drum-tooth surface, which will establish the theoretical and technical foundation for digitized engaging analysis, simulation, and digitized manufacturing technology of the diversified gears.
基金Supported by Key Project of Advanced Research Foundation(9140A18020113)Advanced Research Foundation Project(9140A18020212)+1 种基金Advanced Research Project(51318025131812)
文摘In order to improve the machining efficiency of the dish wheel grinding face gear, two changes are proposed:a disk wheel grinding face gear with a long radius and a multi-axis movement optimization method for tooth surface correction. Based on the grinding principle of face gears, the equation of the long radius disk wheel is deduced. Based on the structure of the machining tool, the tooth surface equations of the face gear shaped by the long radius disk wheel are established. Furthermore, an optimization model of face gear tooth surface correction is established, and the machine tool motion optimization of face gear tooth surface correction is completed;Finally, a long radius disk wheel grinding face gear test is performed. After the face gear tooth surface correction, the maximum value of the tooth surface deviation is reduced from 180 μm to 16 μm which verified the correctness of the machining method.
基金supported by the National Natural Science Foundations of China(Nos.51105194,51375226)the Fundamental Research Funds for the Central Universities(No.NS2015049)
文摘Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gear teeth.Thus,a calculation solution of mesh stiffness of face gear drives with a spur gear,which is based on the proposed equivalent face gear teeth and Ishikawa model,is constructed,and the influence of contact effects on mesh stiffness of face gear drives is investigated.The results indicate the mesh stiffness of face gear drives is sensitive to contact effects under heavy loaded operating conditions,specially.These contributions will benefit to improve dynamic studies of face gear drives.