Metastable nanostructured electrocatalyst with a completely different surface environment compared to conventional phase-based electrocatalyst often shows distinctive catalytic property.Although Ru-based electrocataly...Metastable nanostructured electrocatalyst with a completely different surface environment compared to conventional phase-based electrocatalyst often shows distinctive catalytic property.Although Ru-based electrocatalysts have been widely investigated toward hydrogen oxidation reaction(HOR)under alkaline electrolytes,these studies are mostly limited to conventional hexagonal-close-packed(hcp)phase,mainly arising from the lack of sufficient synthesis strategies.In this study,we report the precise synthesis of metastable binary RuW alloy with face-centered-cubic(fcc)phase.We find that the introduction of W can serve as fcc phase seeds and reduce the formation energy of metastable fcc-RuW alloy.Impressively,fcc-RuW exhibits remarkable alkaline HOR performance and stability with the activity of 0.67 mA cm_(Ru)^(-2)which is almost five and three times higher than that of hcp-Ru and commercial Pt/C,respectively,which is attributed to the optimized binding strength of adsorbed hydroxide intermediate derived from tailored electronic structure through W doping and phase engineering.Moreover,this strategy can also be applied to synthesize other metastable fcc-RuCr and fcc-RuMo alloys with enhanced HOR performances.展开更多
The anti-bird-strike performance of a lattice-material-infilled curved plate is investigated herein.Since automatically filling the curved structure by classical lattice material filling methods will cause a large num...The anti-bird-strike performance of a lattice-material-infilled curved plate is investigated herein.Since automatically filling the curved structure by classical lattice material filling methods will cause a large number of manufacturing defects,a space-dependent lattice material filling method for the curved plate is firstly proposed in this paper Next,using a face-centered cubic lattice,a lattice-material-infilled test piece with a hollow ratio of 40.8%is built.The test pieces are manufactured via additive manufacturing using titanium alloy.In bird-strike experimental tests,the test pieces are crashed against gelatin birds at an impact velocity of 200 m/s.Dynamic strain gauges are used to record the crash history and the results are discussed.Furthermore,a numerical analysis to simulate the bird-strike experiment is performed.The results from the experimental tests and numerical simulation agree well.This work shows that the lattice-material-infilled curved plate yields promising bird-strike resistance.Therefore,lattice-infilled materials are feasible for protecting aerospace components against bird-strike as well as for reducing the component weight.展开更多
The microfractography of transgranular stress corrosion cracking (TSCC) of 70Cu-30Zn a-brass in ammoniacal solution was studied. The observations indicate that on a very microscale, the crack path of TSCC of or-brass ...The microfractography of transgranular stress corrosion cracking (TSCC) of 70Cu-30Zn a-brass in ammoniacal solution was studied. The observations indicate that on a very microscale, the crack path of TSCC of or-brass follows {111} planes. The crack path very often alternates between {111} Planes to result in 'cleavage-like'facet, the usual average orientation of which is {110} with preferential microscopic crack propagation in (100) and (112) directions. The average orientation of wide secondary facets is often close to {100}. The size of {111} microfacets increases with incrmsing stress intensity K, which indicates that the microscopic crack path follows {111} planes on which some localized slip has occurred. Possible TSCC mechanisms which appear to be consistent with the microfraphic features observed in the present study are also discussed.展开更多
Controlled synthesis of transition metal dichalcogenide (TMD) monolayers with unusual crystal phases has attracted increasing attention due to their promising applications in electrocatalysis.However,the facile and la...Controlled synthesis of transition metal dichalcogenide (TMD) monolayers with unusual crystal phases has attracted increasing attention due to their promising applications in electrocatalysis.However,the facile and large-scale preparation of TMD monolayers with high-concentration unusual crystal phase still remains a challenge.Herein,we report the synthesis of MoX2 (X =Se or S) monolayers with high-concentration semimetallic 1T'phase by using the 4H/face-centered cubic (fcc)-Au nanorod as template to form the 4H/fcc-Au@MoX2 nanocomposite.The concentrations of 1T'phase in the prepared MoSe2 and MoS2 monolayers are up to 86% and 81%,respectively.As a proof-of-concept application,the obtained Au@MoS2 nanocomposite is used for the electrocatalytic hydrogen evolution reaction (HER) in acid medium,exhibiting excellent performance with a low overpotential of 178 mV at the current density of 10 mNcm^2,a small Tafel slope of 43.3 mV/dec,and excellent HER stability.This work paves a way for direct synthesis of TMD monolayers with high-concentration of unusual crystal phase for the electrocatalytic application.展开更多
基金the support from the National Natural Science Foundation of China(22272121,21972107)the National Key Research and Development program of China(2021YFB4001200)。
文摘Metastable nanostructured electrocatalyst with a completely different surface environment compared to conventional phase-based electrocatalyst often shows distinctive catalytic property.Although Ru-based electrocatalysts have been widely investigated toward hydrogen oxidation reaction(HOR)under alkaline electrolytes,these studies are mostly limited to conventional hexagonal-close-packed(hcp)phase,mainly arising from the lack of sufficient synthesis strategies.In this study,we report the precise synthesis of metastable binary RuW alloy with face-centered-cubic(fcc)phase.We find that the introduction of W can serve as fcc phase seeds and reduce the formation energy of metastable fcc-RuW alloy.Impressively,fcc-RuW exhibits remarkable alkaline HOR performance and stability with the activity of 0.67 mA cm_(Ru)^(-2)which is almost five and three times higher than that of hcp-Ru and commercial Pt/C,respectively,which is attributed to the optimized binding strength of adsorbed hydroxide intermediate derived from tailored electronic structure through W doping and phase engineering.Moreover,this strategy can also be applied to synthesize other metastable fcc-RuCr and fcc-RuMo alloys with enhanced HOR performances.
基金provided by National Key R&D Program of China(2018YFB1106400)National Natural Science Foundation of China(11672057,11702052,U1906233)+1 种基金Aeronautical Science Foundation of China(2018ZB63002)China Postdoctoral Science Foundation(2018M640251,2019T120201)。
文摘The anti-bird-strike performance of a lattice-material-infilled curved plate is investigated herein.Since automatically filling the curved structure by classical lattice material filling methods will cause a large number of manufacturing defects,a space-dependent lattice material filling method for the curved plate is firstly proposed in this paper Next,using a face-centered cubic lattice,a lattice-material-infilled test piece with a hollow ratio of 40.8%is built.The test pieces are manufactured via additive manufacturing using titanium alloy.In bird-strike experimental tests,the test pieces are crashed against gelatin birds at an impact velocity of 200 m/s.Dynamic strain gauges are used to record the crash history and the results are discussed.Furthermore,a numerical analysis to simulate the bird-strike experiment is performed.The results from the experimental tests and numerical simulation agree well.This work shows that the lattice-material-infilled curved plate yields promising bird-strike resistance.Therefore,lattice-infilled materials are feasible for protecting aerospace components against bird-strike as well as for reducing the component weight.
文摘The microfractography of transgranular stress corrosion cracking (TSCC) of 70Cu-30Zn a-brass in ammoniacal solution was studied. The observations indicate that on a very microscale, the crack path of TSCC of or-brass follows {111} planes. The crack path very often alternates between {111} Planes to result in 'cleavage-like'facet, the usual average orientation of which is {110} with preferential microscopic crack propagation in (100) and (112) directions. The average orientation of wide secondary facets is often close to {100}. The size of {111} microfacets increases with incrmsing stress intensity K, which indicates that the microscopic crack path follows {111} planes on which some localized slip has occurred. Possible TSCC mechanisms which appear to be consistent with the microfraphic features observed in the present study are also discussed.
文摘Controlled synthesis of transition metal dichalcogenide (TMD) monolayers with unusual crystal phases has attracted increasing attention due to their promising applications in electrocatalysis.However,the facile and large-scale preparation of TMD monolayers with high-concentration unusual crystal phase still remains a challenge.Herein,we report the synthesis of MoX2 (X =Se or S) monolayers with high-concentration semimetallic 1T'phase by using the 4H/face-centered cubic (fcc)-Au nanorod as template to form the 4H/fcc-Au@MoX2 nanocomposite.The concentrations of 1T'phase in the prepared MoSe2 and MoS2 monolayers are up to 86% and 81%,respectively.As a proof-of-concept application,the obtained Au@MoS2 nanocomposite is used for the electrocatalytic hydrogen evolution reaction (HER) in acid medium,exhibiting excellent performance with a low overpotential of 178 mV at the current density of 10 mNcm^2,a small Tafel slope of 43.3 mV/dec,and excellent HER stability.This work paves a way for direct synthesis of TMD monolayers with high-concentration of unusual crystal phase for the electrocatalytic application.