Aiming at the issue of the grinding integrity of face-gear with worm wheel, the envelope mathematical model of shaper, worm wheel and face-gear is established based on theories of differential geometry and gear mesh. ...Aiming at the issue of the grinding integrity of face-gear with worm wheel, the envelope mathematical model of shaper, worm wheel and face-gear is established based on theories of differential geometry and gear mesh. The judgment of completely grinding the face-gear with the avoidance of singularities is established, and the mathematical expression to show the reason why singularities appear is derived, through the research on the surface contact area and singularity rules of the worm thread surface. The disadvantage of current face-gear grinding method that only part of the working surface of the face-gear can be covered is analyzed and the influence of coefficient of judgment is studied through changing the design parameters.展开更多
A fabrication method is adopted for which an imaginary gear simultaneously realizes conjugated meshing with an arc tooth cylindrical gear and an arc tooth face-gear. The cutter fillet and tooth crest edge form the too...A fabrication method is adopted for which an imaginary gear simultaneously realizes conjugated meshing with an arc tooth cylindrical gear and an arc tooth face-gear. The cutter fillet and tooth crest edge form the tooth root fillet of the gear, and the linear tooth surface equation of the imaginary gear and the position vector of the curvature center of the cutter fillet arc constructed with certain cutter inclination to deduce a working arc tooth surface equation. The tooth root fillet equation of the arc tooth face-gear is derived from the meshing geometry and kinematics. A numer- ically controlled machining model of the arc tooth face-gear is established through the transforma- tion of adjustment parameters from the cutter-tilt milling machine to a common multi-axis NC machine. Motion parameters of each movement axis of the NC machine are acquired. A processing example is presented to verify the precision of the fabrication method in processing the arc tooth face-gear. The method provides a theoretical and tentative basis for the analysis of tooth surface contact stress, tooth root bending stress and dynamics. A hobbing test is conducted to demonstrate the good meshing condition of the arc tooth face-gear pair.展开更多
基金Projects(51275530,51535012) supported by the National Natural Science Foundation of ChinaProject(2011CB706800) supported by the National Basic Research Program of China
文摘Aiming at the issue of the grinding integrity of face-gear with worm wheel, the envelope mathematical model of shaper, worm wheel and face-gear is established based on theories of differential geometry and gear mesh. The judgment of completely grinding the face-gear with the avoidance of singularities is established, and the mathematical expression to show the reason why singularities appear is derived, through the research on the surface contact area and singularity rules of the worm thread surface. The disadvantage of current face-gear grinding method that only part of the working surface of the face-gear can be covered is analyzed and the influence of coefficient of judgment is studied through changing the design parameters.
基金co-supported by the National Natural Science Foundation of China (No.51175423)the Aeronautical Science Foundation of China (No.2011ZB55002)+1 种基金Science & Technology Innovation Talents in Universities of Henan Province,‘‘HASTIT’’(No.2012HASTIT023)Assistance Scheme of Young Backbone Teachers of Henan Province Colleges and Universities (No.2010GGJS-147)
文摘A fabrication method is adopted for which an imaginary gear simultaneously realizes conjugated meshing with an arc tooth cylindrical gear and an arc tooth face-gear. The cutter fillet and tooth crest edge form the tooth root fillet of the gear, and the linear tooth surface equation of the imaginary gear and the position vector of the curvature center of the cutter fillet arc constructed with certain cutter inclination to deduce a working arc tooth surface equation. The tooth root fillet equation of the arc tooth face-gear is derived from the meshing geometry and kinematics. A numer- ically controlled machining model of the arc tooth face-gear is established through the transforma- tion of adjustment parameters from the cutter-tilt milling machine to a common multi-axis NC machine. Motion parameters of each movement axis of the NC machine are acquired. A processing example is presented to verify the precision of the fabrication method in processing the arc tooth face-gear. The method provides a theoretical and tentative basis for the analysis of tooth surface contact stress, tooth root bending stress and dynamics. A hobbing test is conducted to demonstrate the good meshing condition of the arc tooth face-gear pair.