A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under threepoint bending,both analytically and numerically.Perforated square holes in the bottom facesheet are characterize...A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under threepoint bending,both analytically and numerically.Perforated square holes in the bottom facesheet are characterized by the area ratio of the hole to intact facesheet(perforation ratio).While for large-scale engineering applications like the decks of cargo vehicles and transportation ships,the perforations are needed to facilitate the fabrication process(e.g.,laser welding)as well as service maintenance,it is demonstrated that these perforations,when properly designed,can also enhance the resistance of the sandwich to bending.For illustration,fair comparisons among competing sandwich designs having different perforation ratios but equal mass is achieved by systematically thickening the core webs.Further,the perforated sandwich beam is designed with a relatively thick facesheet to avoid local indention failure so that it mainly fails in two competing modes:(1)bending failure,i.e.,yielding of beam cross-section and buckling of top facesheet caused by bending moment;(2)shear failure,i.e.,yielding and buckling of core webs due to shear forcing.The sensitivity of the failure loads to the ratio of core height to beam span is also discussed for varying perforation ratios.As the perfo-ration ratio is increased,the load of shear failure increases due to thickening core webs,while that of bending failure decreases due to the weakening bottom facesheet.Design of a sandwich beam with optimal perforation ratio is realized when the two failure loads are equal,leading to significantly enhanced failure load(up to 60%increase)relative to that of a non-perforated sandwich beam with equal mass.展开更多
The purpose of this paper is to investigate the bending,buckling,vibration analyses of microcomposite circular-annular sandwich plate with CNT reinforced composite facesheets under hydro-thermo-magneto-mechanical load...The purpose of this paper is to investigate the bending,buckling,vibration analyses of microcomposite circular-annular sandwich plate with CNT reinforced composite facesheets under hydro-thermo-magneto-mechanical loadings are presented using first order shear deformation theory(FSDT)and modified strain gradient theory(MSGT)that includes three material length scale parameters.Also,an isotropic homogeneous core is considered for microcomposite circular-annular sandwich plate.The generalized rule of mixture is employed to predict mechanical,moisture and thermal properties ofmicrocomposite sandwich plate.By using Hamilton’s principle,governing equations are solved by differential quadrature method(DQM)for a circular annular sandwich plate.The predicted results are validated by carrying out the comparison studies for the FGM plates by modified couple stress theory(MCST).The obtained results are given to indicate the influence of the material length scale parameter,core-to-facesheet thickness ratios,magnetic effect,thermal andmoisture effects on the dimensionless deflection,critical buckling load,and natural frequency of microcomposite circular sandwich plate.The results can be employed in solid-state physics,materials science,nano-electronics,and nano electro-mechanical devices such as microactuators,and microsensor.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11472209, 11472208)the China Postdoctoral Science Foundation (Grant 2016M600782)+2 种基金the Postdoctoral Scientific Research Project of Shaanxi Province (Grant 2016BSHYDZZ18)the Fundamental Research Funds for Xi’an Jiaotong University (Grant xjj2015102)the Jiangsu Province Key Laboratory of High-end Structural Materials (Grant hsm1305)
文摘A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under threepoint bending,both analytically and numerically.Perforated square holes in the bottom facesheet are characterized by the area ratio of the hole to intact facesheet(perforation ratio).While for large-scale engineering applications like the decks of cargo vehicles and transportation ships,the perforations are needed to facilitate the fabrication process(e.g.,laser welding)as well as service maintenance,it is demonstrated that these perforations,when properly designed,can also enhance the resistance of the sandwich to bending.For illustration,fair comparisons among competing sandwich designs having different perforation ratios but equal mass is achieved by systematically thickening the core webs.Further,the perforated sandwich beam is designed with a relatively thick facesheet to avoid local indention failure so that it mainly fails in two competing modes:(1)bending failure,i.e.,yielding of beam cross-section and buckling of top facesheet caused by bending moment;(2)shear failure,i.e.,yielding and buckling of core webs due to shear forcing.The sensitivity of the failure loads to the ratio of core height to beam span is also discussed for varying perforation ratios.As the perfo-ration ratio is increased,the load of shear failure increases due to thickening core webs,while that of bending failure decreases due to the weakening bottom facesheet.Design of a sandwich beam with optimal perforation ratio is realized when the two failure loads are equal,leading to significantly enhanced failure load(up to 60%increase)relative to that of a non-perforated sandwich beam with equal mass.
基金This work was supported by the University of Kashan[574602/15].
文摘The purpose of this paper is to investigate the bending,buckling,vibration analyses of microcomposite circular-annular sandwich plate with CNT reinforced composite facesheets under hydro-thermo-magneto-mechanical loadings are presented using first order shear deformation theory(FSDT)and modified strain gradient theory(MSGT)that includes three material length scale parameters.Also,an isotropic homogeneous core is considered for microcomposite circular-annular sandwich plate.The generalized rule of mixture is employed to predict mechanical,moisture and thermal properties ofmicrocomposite sandwich plate.By using Hamilton’s principle,governing equations are solved by differential quadrature method(DQM)for a circular annular sandwich plate.The predicted results are validated by carrying out the comparison studies for the FGM plates by modified couple stress theory(MCST).The obtained results are given to indicate the influence of the material length scale parameter,core-to-facesheet thickness ratios,magnetic effect,thermal andmoisture effects on the dimensionless deflection,critical buckling load,and natural frequency of microcomposite circular sandwich plate.The results can be employed in solid-state physics,materials science,nano-electronics,and nano electro-mechanical devices such as microactuators,and microsensor.