期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simulation of facet dendrite growth with strong interfacial energy anisotropy by phase field method 被引量:3
1
作者 袁训锋 刘宝盈 +2 位作者 李春 周春生 丁雨田 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期855-861,共7页
Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the ... Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the crystal grows into facet dendrites,displaying six-fold symmetry. The size of initial crystals has an effect on the branching-off of the principal branch tip along the<100> direction, which is eliminated by setting the b/a(a and b are the semi-major and semi-minor sizes in the initial elliptical crystals, respectively) value to be less than or equal to 1. With an increase in the undercooling value, the equilibrium morphology of the crystal changes from a star-like shape to facet dendrites without side branches. The steady-state tip velocity increases exponentially when the dimensionless undercooling is below the critical value. With a further increase in the undercooling value, the equilibrium morphology of the crystal grows into a developed side-branch structure, and the steady-state tip velocity of the facet dendrites increases linearly. The facet dendrite growth has controlled diffusion and kinetics. 展开更多
关键词 phase field facet dendrite hcp materials interfacial energy anisotropy dimensionless undercooling
下载PDF
Microstructure and secondary phases in epitaxial LaBaCo_2O_(5.5 + δ) thin films
2
作者 Jiangbo Lu Lu Lu +2 位作者 Sheng Cheng Ming Liu Chunlin Jia 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第2期398-402,共5页
Aberration-corrected scanning transmission electron microscopy was employed to investigate the microstructures and secondary phases in LaBaCo2O5.5+δ(LBCO) thin films grown on SrTiO3 (STO) substrates. The as-grow... Aberration-corrected scanning transmission electron microscopy was employed to investigate the microstructures and secondary phases in LaBaCo2O5.5+δ(LBCO) thin films grown on SrTiO3 (STO) substrates. The as-grown films showed an epitaxial growth on the substrates with atomically sharp interfaces and orientation relationships of [100]LBCO//[100]STO and (001)LBCO//(001)STO. Secondary phases were observed in the films, which strongly depended on the sample fabrication conditions. In the film prepared at a temperature of 900 ℃, nano-scale CoO pillars nucleated on the substrate, and grew along the [001] direction of the film. In the film grown at a temperature of 1000 ℃, isolated nano-scale C0304 particles appeared, which promoted the growth of {111 } twinning structures in the film. The orientation relationships and the interfaces between the secondary phases and the films were illustrated, and the growth mechanism of the film was discussed. 展开更多
关键词 Nano-structure faceted interfaces Secondary phase growth Epitaxial thin film Microstructure Aberration-corrected scanning transmission electron microscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部