期刊文献+
共找到4,265篇文章
< 1 2 214 >
每页显示 20 50 100
Facies-controlled prediction of dolomite reservoirs in the Middle Permian Qixia Formation in Shuangyushi,northwestern Sichuan Basin
1
作者 Chao Zheng Benjian Zhang +11 位作者 Rongrong Li Hong Yin Yufeng Wang Xin Hu Xiao Chen Ran Liu Qi Zeng Zhiyun Sun Rui Zhang Xingyu Zhang Weidong Yin Kun Zhang 《Energy Geoscience》 EI 2024年第2期21-30,共10页
The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite r... The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite reservoirs were predicted using the techniques of pre-stack Kirchhoff-Q compensation for absorption,inverse Q filtering,low-to high-frequency compensation,forward modeling,and facies-controlled seismic meme inversion.The results are obtained in six aspects.First,the dolomite reservoirs mainly exist in the middle and lower parts of the second member of Qixia Formation(Qi2 Member),which coincide with the zones shoal cores are developed.Second,the forward modeling shows that the trough energy at the top and bottom of shoal core increases with increasing shoal-core thickness,and weak peak reflections are associated in the middle of shoal core.Third,five types of seismic waveform are identified through waveform analysis of seismic facies.Type-Ⅰ and Type-Ⅱ waveforms correspond to promising facies(shoal core microfacies).Fourth,vertically,two packages of thin dolomite reservoirs turn up in the sedimentary cycle of intraplatform shoal in the Qi2 Member,and the lower package is superior to the upper package in dolomite thickness,scale and lateral connectivity.Fifth,in plane,significantly controlled by sedimentary facies,dolomite reservoirs laterally distribute with consistent thickness in shoal cores at topographical highs and extend toward the break.Sixth,the promising prospects are the zones with thick dolomite reservoirs and superimposition of horstegraben structural traps. 展开更多
关键词 reservoir prediction Seismic facies Shoal-facies dolomite Qixia formation Shuangyushi Sichuan basin
下载PDF
Time series prediction of reservoir bank landslide failure probability considering the spatial variability of soil properties 被引量:2
2
作者 Luqi Wang Lin Wang +3 位作者 Wengang Zhang Xuanyu Meng Songlin Liu Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3951-3960,共10页
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab... Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models. 展开更多
关键词 Machine learning(ML) reservoir bank landslide Spatial variability Time series prediction Failure probability
下载PDF
Data-augmented landslide displacement prediction using generative adversarial network 被引量:1
3
作者 Qi Ge Jin Li +2 位作者 Suzanne Lacasse Hongyue Sun Zhongqiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4017-4033,共17页
Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limit... Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models,such as state-of-the-art machine learning(ML)models.To address these challenges,this study proposes a data augmentation framework that uses generative adversarial networks(GANs),a recent advance in generative artificial intelligence(AI),to improve the accuracy of landslide displacement prediction.The framework provides effective data augmentation to enhance limited datasets.A recurrent GAN model,RGAN-LS,is proposed,specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data.A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data.Then,the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory(LSTM)networks and particle swarm optimization-support vector machine(PSO-SVM)models for landslide displacement prediction tasks.Results on two landslides in the Three Gorges Reservoir(TGR)region show a significant improvement in LSTM model prediction performance when trained on augmented data.For instance,in the case of the Baishuihe landslide,the average root mean square error(RMSE)increases by 16.11%,and the mean absolute error(MAE)by 17.59%.More importantly,the model’s responsiveness during mutational stages is enhanced for early warning purposes.However,the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM.Further analysis indicates that an optimal synthetic-to-real data ratio(50%on the illustration cases)maximizes the improvements.This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results.By using the powerful generative AI approach,RGAN-LS can generate high-fidelity synthetic landslide data.This is critical for improving the performance of advanced ML models in predicting landslide displacement,particularly when there are limited training data.Additionally,this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas. 展开更多
关键词 Machine learning(ML) Time series Generative adversarial network(GAN) Three Gorges reservoir(TGR) Landslide displacement prediction
下载PDF
A systematic machine learning method for reservoir identification and production prediction 被引量:3
4
作者 Wei Liu Zhangxin Chen +1 位作者 Yuan Hu Liuyang Xu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期295-308,共14页
Reservoir identification and production prediction are two of the most important tasks in petroleum exploration and development.Machine learning(ML)methods are used for petroleum-related studies,but have not been appl... Reservoir identification and production prediction are two of the most important tasks in petroleum exploration and development.Machine learning(ML)methods are used for petroleum-related studies,but have not been applied to reservoir identification and production prediction based on reservoir identification.Production forecasting studies are typically based on overall reservoir thickness and lack accuracy when reservoirs contain a water or dry layer without oil production.In this paper,a systematic ML method was developed using classification models for reservoir identification,and regression models for production prediction.The production models are based on the reservoir identification results.To realize the reservoir identification,seven optimized ML methods were used:four typical single ML methods and three ensemble ML methods.These methods classify the reservoir into five types of layers:water,dry and three levels of oil(I oil layer,II oil layer,III oil layer).The validation and test results of these seven optimized ML methods suggest the three ensemble methods perform better than the four single ML methods in reservoir identification.The XGBoost produced the model with the highest accuracy;up to 99%.The effective thickness of I and II oil layers determined during the reservoir identification was fed into the models for predicting production.Effective thickness considers the distribution of the water and the oil resulting in a more reasonable production prediction compared to predictions based on the overall reservoir thickness.To validate the superiority of the ML methods,reference models using overall reservoir thickness were built for comparison.The models based on effective thickness outperformed the reference models in every evaluation metric.The prediction accuracy of the ML models using effective thickness were 10%higher than that of reference model.Without the personal error or data distortion existing in traditional methods,this novel system realizes rapid analysis of data while reducing the time required to resolve reservoir classification and production prediction challenges.The ML models using the effective thickness obtained from reservoir identification were more accurate when predicting oil production compared to previous studies which use overall reservoir thickness. 展开更多
关键词 reservoir identification Production prediction Machine learning Ensemble method
下载PDF
A transient production prediction method for tight condensate gas wells with multiphase flow
5
作者 BAI Wenpeng CHENG Shiqing +3 位作者 WANG Yang CAI Dingning GUO Xinyang GUO Qiao 《Petroleum Exploration and Development》 SCIE 2024年第1期172-179,共8页
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press... Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves. 展开更多
关键词 tight reservoir condensate gas multiphase flow phase behavior transient flow PSEUDO-PRESSURE production prediction
下载PDF
A multi-mineral model for predicting petrophysical properties of complex metamorphic reservoirs:Case study of the Bozhong Depression,Bohai Sea
6
作者 Guoqiang Zhang Zhongjian Tan +5 位作者 Guibin Zhang Dong Li Chenchen Liu Zhang Zhang Jun Cao Xin Lei 《Energy Geoscience》 EI 2024年第3期66-76,共11页
Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of suc... Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future. 展开更多
关键词 Logging interpretation Metamorphic rock Buried hill reservoir Petrophysical property prediction Bozhong 19-6 structural zone
下载PDF
The application study on the multi-scales integrated prediction method to fractured reservoir description 被引量:17
7
作者 陈双全 曾联波 +3 位作者 黄平 孙绍寒 张琬璐 李向阳 《Applied Geophysics》 SCIE CSCD 2016年第1期80-92,219,共14页
In this paper,we implement three scales of fracture integrated prediction study by classifying it to macro-( 1/4/λ),meso-( 1/100λ and 1/4λ) and micro-( 1/100λ) scales.Based on the multi-scales rock physics ... In this paper,we implement three scales of fracture integrated prediction study by classifying it to macro-( 1/4/λ),meso-( 1/100λ and 1/4λ) and micro-( 1/100λ) scales.Based on the multi-scales rock physics modelling technique,the seismic azimuthal anisotropy characteristic is analyzed for distinguishing the fractures of meso-scale.Furthermore,by integrating geological core fracture description,image well-logging fracture interpretation,seismic attributes macro-scale fracture prediction and core slice micro-scale fracture characterization,an comprehensive multi-scale fracture prediction methodology and technique workflow are proposed by using geology,well-logging and seismic multi-attributes.Firstly,utilizing the geology core slice observation(Fractures description) and image well-logging data interpretation results,the main governing factors of fracture development are obtained,and then the control factors of the development of regional macro-scale fractures are carried out via modelling of the tectonic stress field.For the meso-scale fracture description,the poststack geometric attributes are used to describe the macro-scale fracture as well,the prestack attenuation seismic attribute is used to predict the meso-scale fracture.Finally,by combining lithological statistic inversion with superposed results of faults,the relationship of the meso-scale fractures,lithology and faults can be reasonably interpreted and the cause of meso-scale fractures can be verified.The micro-scale fracture description is mainly implemented by using the electron microscope scanning of cores.Therefore,the development of fractures in reservoirs is assessed by valuating three classes of fracture prediction results.An integrated fracture prediction application to a real field in Sichuan basin,where limestone reservoir fractures developed,is implemented.The application results in the study area indicates that the proposed multi-scales integrated fracture prediction method and the technique procedureare able to deal with the strong heterogeneity and multi-scales problems in fracture prediction.Moreover,the multi-scale fracture prediction technique integrated with geology,well-logging and seismic multi-information can help improve the reservoir characterization and sweet-spots prediction for the fractured hydrocarbon reservoirs. 展开更多
关键词 Multi-scales Fracture prediction HETEROGENEITY reservoir characterization Sweet-spots prediction
下载PDF
Application of Prediction Techniques in Carbonate Karst Reservoir in Tarim Basin 被引量:5
8
作者 陈广坡 撒利明 +2 位作者 韩剑发 管文胜 Guan Wensheng 《Applied Geophysics》 SCIE CSCD 2005年第2期111-118,F0003,共9页
Carbonate karst reservoir is the emphases of Tarim's carbonate exploration. However, it is buried at a large depth, which results in Weak seismic reflection signal and low S/N ratio. In addition, the karst reservoir ... Carbonate karst reservoir is the emphases of Tarim's carbonate exploration. However, it is buried at a large depth, which results in Weak seismic reflection signal and low S/N ratio. In addition, the karst reservoir contains great heterogeneity, so reservoir prediction is very difficult. Through many years of research and exploration, we have established a suite of comprehensive evaluation technology for carbonate karst reservoir using geophysical characteristics and a geological concept model, including a technique for reconstructing the paleogeomorphology of buried hills based on a sequence framework, seismic description of the karst reservoir, and strain variant analysis for fracture estimation. The evaluation technology has been successfully applied in the Tabei and Tazhong areas, and commercial production of oil and gas has been achieved. We show the application of this technology in the Lunguxi area in North Tarim in this paper. 展开更多
关键词 Tarim basin karst reservoir seismic response reservoir prediction and comprehensive evaluation
下载PDF
Reservoir prediction using pre-stack inverted elastic parameters 被引量:8
9
作者 陈双全 王尚旭 +1 位作者 张永刚 季敏 《Applied Geophysics》 SCIE CSCD 2009年第4期349-358,394,共11页
This is a case study of the application of pre-stack inverted elastic parameters to tight-sand reservoir prediction. With the development of oil and gas exploration, pre-stack data and inversion results are increasing... This is a case study of the application of pre-stack inverted elastic parameters to tight-sand reservoir prediction. With the development of oil and gas exploration, pre-stack data and inversion results are increasingly used for production objectives. The pre-stack seismic property studies include not only amplitude verse offset (AVO) but also the characteristics of other elastic property changes. In this paper, we analyze the elastic property parameters characteristics of gas- and wet-sands using data from four gas-sand core types. We found that some special elastic property parameters or combinations can be used to identify gas sands from water saturated sand. Thus, we can do reservoir interpretation and description using different elastic property data from the pre-stack seismic inversion processing. The pre- stack inversion method is based on the simplified Aki-Richard linear equation. The initial model can be generated from well log data and seismic and geologic interpreted horizons in the study area. The input seismic data is angle gathers generated from the common reflection gathers used in pre-stack time or depth migration. The inversion results are elastic property parameters or their combinations. We use a field data example to examine which elastic property parameters or combinations of parameters can most easily discriminate gas sands from background geology and which are most sensitive to pore-fluid content. Comparing the inversion results to well data, we found that it is useful to predict gas reservoirs using λ, λρ, λ/μ, and K/μ properties, which indicate the gas characteristics in the study reservoir. 展开更多
关键词 elastic parameters pre-stack inversion reservoir prediction AVO analysis angle gather
下载PDF
Seismic Prediction of Prolific Oil Zones in Carbonate Reservoirs with Extremely Low Porosity and Permeability under Salt
10
作者 郑晓东 徐安娜 +3 位作者 杨志芳 李勇根 刘颖 Zhang xin 《Applied Geophysics》 SCIE CSCD 2005年第2期103-110,F0003,共9页
The Carboniferous reservoir in KJ oilfield is a carbonate reservoir with extremely low porosity and permeability and high-pressure. The reservoir has severe heterogeneity, is deeply buried, has complex master control ... The Carboniferous reservoir in KJ oilfield is a carbonate reservoir with extremely low porosity and permeability and high-pressure. The reservoir has severe heterogeneity, is deeply buried, has complex master control factors, is covered with thick salt, all of which result in the serious distortion of reflection time and amplitudes under the salt, the poor seismic imaging, and the low S/N ratio and resolution. The key to developing this kind of reservoir is to correctly predict the distribution of highly profitable oil zones. In this paper we start by analyzing the master control factors, perform seismic-log calibration, optimize the seismic attributes indicating the lithofacies, karst, petrophysical properties, and fractures, and combine these results with the seismic, geology, log, oil reservoir engineering, and well data. We decompose the seismic prediction into six key areas: structural interpretation, prediction of lithofacies, karst, petrophysical properties, fractures, and then perform an integrated assessment. First, based on building the models of faults and fractures, sedimentary facies, and karst, we predict the distribution of the most favorable reservoir zones qualitatively. Then, using multi-parameter inversion and integrated multi-attribute analysis, we predict the favorable reservoir distribution quantitatively and semi-quantitatively to clarify the distribution of high-yield zones. We finally have a reliable basis for optimal selection of exploration and development targets. 展开更多
关键词 ATTRIBUTE CARBONATE reservoir prediction model building and Kazakhstan
下载PDF
Prediction of Fracture-Cavity System in Carbonate Reservoir: A Case Study in the Tahe Oilfield 被引量:16
11
作者 WangShixing GuanLuping ZhuHailong 《Applied Geophysics》 SCIE CSCD 2004年第1期56-62,共7页
The carbonate rocks in Tahe oilfield, which suffered from multi-period polycycle karstification and structure deformation, are heterogeneous reservoirs that are rich in pores, cavities,and fractures. The reservoirs ar... The carbonate rocks in Tahe oilfield, which suffered from multi-period polycycle karstification and structure deformation, are heterogeneous reservoirs that are rich in pores, cavities,and fractures. The reservoirs are diversified in scale, space configuration, and complex in filling. For this kind of reservoir, a suite of seismic prestack or poststack prediction techniques has been developed based on the separation of seismic wave fields. Through cross-verification of the estimated results,a detailed description of palaeogeomorphology and structural features such as pores, cavities, and fractures in unaka has been achieved, the understanding of the spatial distribution of reservoir improved. 展开更多
关键词 FRACTURE CAVERN CARBONATE reservoir and prediction
下载PDF
Pre-stack inversion for caved carbonate reservoir prediction:A case study from Tarim Basin,China 被引量:9
12
作者 Zhang Yuanyin Sam Zandong Sun +5 位作者 Yang Haijun Wang Haiyang HanJianfa Gao Hongliang Luo Chunshu Jing Bing 《Petroleum Science》 SCIE CAS CSCD 2011年第4期415-421,共7页
The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the o... The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the oilfield at present since pre-stack inversion is always limited by poor seismic data quality and insufficient logging data.In this paper,based on amplitude preserved seismic data processing and rock-physics analysis,pre-stack inversion is employed to predict the caved carbonate reservoir in TZ45 area by seriously controlling the quality of inversion procedures.These procedures mainly include angle-gather conversion,partial stack,wavelet estimation,low-frequency model building and inversion residual analysis.The amplitude-preserved data processing method can achieve high quality data based on the principle that they are very consistent with the synthetics.Besides,the foundation of pre-stack inversion and reservoir prediction criterion can be established by the connection between reservoir property and seismic reflection through rock-physics analysis.Finally,the inversion result is consistent with drilling wells in most cases.It is concluded that integrated with amplitude-preserved processing and rock-physics,pre-stack inversion can be effectively applied in the caved carbonate reservoir prediction. 展开更多
关键词 Carbonate reservoir prediction pre-stack inversion amplitude-preserved processing rock physics
下载PDF
Displacement characteristics and prediction of Baishuihe landslide in the Three Gorges Reservoir 被引量:5
13
作者 LI De-ying SUN Yi-qing +3 位作者 YIN Kun-long MIAO Fa-sheng Thomas GLADE Chin LEO 《Journal of Mountain Science》 SCIE CSCD 2019年第9期2203-2214,共12页
In order to reach the designated final water level of 175 m, there were three impoundment stages in the Three Gorges Reservoir, with water levels of 135 m, 156 m and 175 m. Baishuihe landslide in the Reservoir was cho... In order to reach the designated final water level of 175 m, there were three impoundment stages in the Three Gorges Reservoir, with water levels of 135 m, 156 m and 175 m. Baishuihe landslide in the Reservoir was chosen to analyze its displacement characteristics and displacement variability at the different stages. Based on monitoring data, the landslide displacement was mainly influenced by rainfall and drawdown of the reservoir water level. However, the magnitude of the rise and drawdown of the water level after the reservoir water level reached 175 m did not accelerate landslide displacement. The prediction of landslide displacement for active landslides is very important for landslide risk management. The time series of cumulative displacement was divided into a trend term and a periodic term using the Hodrick-Prescott(HP) filter method. The polynomial model was used to predict the trend term. The extreme learning machine(ELM) and least squares support vector machine(LS-SVM) were chosen to predict theperiodic term. In the prediction model for the periodic term, input variables based on the effects of rainfall and reservoir water level in landslide displacement were selected using grey relational analysis. Based on the results, the prediction precision of ELM is better than that of LS-SVM for predicting landslide displacement. The method for predicting landslide displacement could be applied by relevant authorities in making landslide emergency plans in the future. 展开更多
关键词 LANDSLIDE THREE Gorges reservoir IMPOUNDMENT process DISPLACEMENT prediction
下载PDF
Multiple-Element Matching Reservoir Formation and Quantitative Prediction of Favorable Areas in Superimposed Basins 被引量:9
14
作者 WANG Huaijie PANG Xiongqi +3 位作者 WANG Zhaoming YU Qiuhua HUO Zhipeng MENG Qingyang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第5期1035-1054,共20页
Superimposed basins in West China have experienced multi-stage tectonic events and multicycle hydrocarbon reservoir formation, and complex hydrocarbon reservoirs have been discovered widely in basins of this kind. Mos... Superimposed basins in West China have experienced multi-stage tectonic events and multicycle hydrocarbon reservoir formation, and complex hydrocarbon reservoirs have been discovered widely in basins of this kind. Most of the complex hydrocarbon reservoirs are characterized by relocation, scale re-construction, component variation and phase state transformation, and their distributions are very difficult to predict. Research shows that regional caprock (C), high-quality sedimentary facies (Deposits, D), paleohighs (Mountain, M) and source rock (S) are four geologic elements contributing to complex hydrocarbon reservoir formation and distribution of western superimposed basins. Longitudinal sequential combinations of the four elements control the strata of hydrocarbon reservoir formation, and planar superimpositions and combinations control the range of hydrocarbon reservoir and their simultaneous joint effects in geohistory determine the time of hydrocarbon reservoir formation. Multiple-element matching reservoir formation presents a basic mode of reservoir formation in superimposed basins, and we recommend it is expressed as T-CDMS. Based on the multiple-element matching reservoir formation mode, a comprehensive reservoir formation index (Tcdms) is developed in this paper to characterize reservoir formation conditions, and a method is presented to predict reservoir formation range and probability of occurrence in superimposed basins. Through application of new theory, methods and technology, the favorable reservoir formation range and probability of occurrence in the Ordovician target zone in Tarim Basin in four different reservoir formation periods are predicted. Results show that central Tarim, Yinmaili and Lunnan are the three most favorable regions where Ordovician oil and gas fields may have formed. The coincidence of prediction results with currently discovered hydrocarbon reservoirs reaches 97 %. This reflects the effectiveness and reliability of the new theory, methods and technology. 展开更多
关键词 superimposed basin complex hydrocarbon reservoir elements matching reservoirformation prediction of favorable hydrocarbon accumulation zone Tarim Basin
下载PDF
Prediction of chlorophyll a concentration using HJ-1 satellite imagery for Xiangxi Bay in Three Gorges Reservoir 被引量:7
15
作者 Dong-xing FAN Yu-ling HUANG +3 位作者 Lin-xu SONG De-fu LIU Ge ZHANG Biao ZHANG 《Water Science and Engineering》 EI CAS CSCD 2014年第1期70-80,共11页
Since the impoundment of the Three Gorges Reservoir in 2003, algal blooms have frequently been observed in it. The chlorophyll a concentration is an important parameter for evaluating algal blooms. In this study, the ... Since the impoundment of the Three Gorges Reservoir in 2003, algal blooms have frequently been observed in it. The chlorophyll a concentration is an important parameter for evaluating algal blooms. In this study, the chlorophyll a concentration in Xiangxi Bay, in the Three Gorges Reservoir, was predicted using HJ-1 satellite imagery. Several models were established based on a correlation analysis between in situ measurements of the chlorophyll a concentration and the values obtained from satellite images of the study area from January 2010 to December 2011. Chlorophyll a concentrations in Xiangxi Bay were predicted based on the established models. The results show that the maximum correlation is between the reflectance of the band combination of B4/(B2+B3) and in situ measurements of chlorophyll a concentration. The root mean square errors of the predicted values using the linear and quadratic models are 18.49 mg/m3 and 18.52 mg/m3, respectively, and the average relative errors are 37.79% and 36.79%, respectively. The results provide a reference for water bloom prediction in typical tributaries of the Three Gorges Reservoir and contribute to large-scale remote sensing monitoring and water quality management. 展开更多
关键词 chlorophyll a concentration H J-1 satellite remote sensing prediction correlation analysis Xiangxi Bay Three Gorges reservoir
下载PDF
Mesozoic Reservoir Predictionin the Longdong Loess Plateau 被引量:8
16
作者 WangDaxing GaoJinghuai +2 位作者 LiYouming XiaZhengyuan WangBaojiang 《Applied Geophysics》 SCIE CSCD 2004年第1期20-25,共6页
This paper summarizes a set of interpretation technologies for Mesozoic sandstone reservoir prediction in the Longdong loess plateau, such as seismic sequence processing and interpretation based on generalized S trans... This paper summarizes a set of interpretation technologies for Mesozoic sandstone reservoir prediction in the Longdong loess plateau, such as seismic sequence processing and interpretation based on generalized S transform, the eroded paleo-geomorphology interpretation of the top of the Triassic and a variety of lateral reservoir predictions. The effects of employing these technologies are compared and analyzed, as well. The research results show that seismic sequence processing interpretation technology based on generalized S transform can distinguish 3ms (about the thickness of 6 m)sequence interface. Consequently the technology can ascertain the distribution of a sand body of the formation Ch 8 and expand the exploration area of the Xifeng oil field in the Longdong area. 展开更多
关键词 SEISMIC sandstone reservoir lateral prediction and reserves
下载PDF
Seismic attributes optimization and application in reservoir prediction 被引量:7
17
作者 Gao Jun Wang Jianmin +2 位作者 Yun Meihou Huang Baoshun Zhang Guocai 《Applied Geophysics》 SCIE CSCD 2006年第4期243-247,共5页
Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin ... Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability. 展开更多
关键词 Seismic attributes reservoir prediction component analysis and Daqing Oilfield.
下载PDF
Machine learning seismic reservoir prediction method based on virtual sample generation 被引量:6
18
作者 Kai-Heng Sang Xing-Yao Yin Fan-Chang Zhang 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1662-1674,共13页
Seismic reservoir prediction plays an important role in oil exploration and development.With the progress of artificial intelligence,many achievements have been made in machine learning seismic reservoir prediction.Ho... Seismic reservoir prediction plays an important role in oil exploration and development.With the progress of artificial intelligence,many achievements have been made in machine learning seismic reservoir prediction.However,due to the factors such as economic cost,exploration maturity,and technical limitations,it is often difficult to obtain a large number of training samples for machine learning.In this case,the prediction accuracy cannot meet the requirements.To overcome this shortcoming,we develop a new machine learning reservoir prediction method based on virtual sample generation.In this method,the virtual samples,which are generated in a high-dimensional hypersphere space,are more consistent with the original data characteristics.Furthermore,at the stage of model building after virtual sample generation,virtual samples screening and model iterative optimization are used to eliminate noise samples and ensure the rationality of virtual samples.The proposed method has been applied to standard function data and real seismic data.The results show that this method can improve the prediction accuracy of machine learning significantly. 展开更多
关键词 Virtual sample Machine learning reservoir prediction Hypersphere characteristic equation
下载PDF
Pre-Drilling Prediction Techniques on the High-Temperature High-Pressure Hydrocarbon Reservoirs Offshore Hainan Island,China 被引量:2
19
作者 ZHANG Hanyu LIU Huaishan +6 位作者 WU Shiguo SUN Jin YANG Chaoqun XIE Yangbing CHEN Chuanxu GAO Jinwei WANG Jiliang 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期72-82,共11页
Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure(HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques(PPTs). To improve... Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure(HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques(PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island. 展开更多
关键词 pre-drilling prediction techniques formation PORE pressure high-temperature high-pressure hydrocarbon reservoirS HAINAN Island Ying-Qiong Basin
下载PDF
Reservoir prediction using multi-wave seismic attributes 被引量:2
20
作者 Ye Yuan Yang Liu +2 位作者 Jingyu Zhang Xiucheng Wei Tiansheng Chen 《Earthquake Science》 CSCD 2011年第4期373-389,共17页
The main problems in seismic attribute technology are the redundancy of data and the uncertainty of attributes, and these problems become much more serious in multi-wave seismic exploration. Data redundancy will incre... The main problems in seismic attribute technology are the redundancy of data and the uncertainty of attributes, and these problems become much more serious in multi-wave seismic exploration. Data redundancy will increase the burden on interpreters, occupy large computer memory, take much more computing time, conceal the effective information, and especially cause the "curse of dimension". Uncertainty of attributes will reduce the accuracy of rebuilding the relationship between attributes and geological significance. In order to solve these problems, we study methods of principal component analysis (PCA), independent component analysis (ICA) for attribute optimization and support vector machine (SVM) for reservoir prediction. We propose a flow chart of multi-wave seismic attribute process and further apply it to multi-wave seismic reservoir prediction. The processing results of real seismic data demonstrate that reservoir prediction based on combination of PP- and PS-wave attributes, compared with that based on traditional PP-wave attributes, can improve the prediction accuracy. 展开更多
关键词 seismic attribute multi-wave exploration independent component analysis supportvector machine reservoir prediction
下载PDF
上一页 1 2 214 下一页 到第
使用帮助 返回顶部