Prefabricated vertical drains(PVDs)are commonly used to shorten the drainage path for consolidation as part of the improvement of marine soft ground.Many studies that focus on the primary consolidation settlement of P...Prefabricated vertical drains(PVDs)are commonly used to shorten the drainage path for consolidation as part of the improvement of marine soft ground.Many studies that focus on the primary consolidation settlement of PVD-improved soft ground have been conducted;however,residual settlement has been scarcely investigated.Residual settlement is the net effect of secondary compression and the remaining primary consolidation and generally occurs while the facilities are operating.In this study,residual settlement was investigated using the measured field settlement data obtained from the surface settlement plate and multilayer settlement gauges.This study determined that PVD still has some effect on residual settlement and can reduce the settlement times.Residual settlement is only related to the PVD-improved soil layer and only occurs significantly in the middle zone of that layer over a few months.The middle zone may be related to the time delay of excess pore water pressure dissipation.This study concluded that the remaining primary consolidation in the PVD-improved soil layer is the primary cause of residual settlement,whereas secondary compression in the PVD-improved soil layer is only a minor cause.展开更多
A hybrid control platform is investigated in this paper to mitigate microvibrations to a group of vibration-sensitive equipment installed in a microelectronics facility subject to nearby road vehicle-induced horizonta...A hybrid control platform is investigated in this paper to mitigate microvibrations to a group of vibration-sensitive equipment installed in a microelectronics facility subject to nearby road vehicle-induced horizontal and vertical ground motions. The hybrid control platform, on which microelectronics equipment is installed, is mounted on a building floor through a series of passive mounts and controlled by hydraulic actuators in both horizontal and vertical directions. The control platform is an elastic body with significant bending modes of vibration, and a sub-optimal control algorithm is used to manipulate the hydraulic actuators with actuator dynamics included. The finite element model and the equations of motion of the coupled platform-building system are then established in the absolute coordinate to facilitate the feedback control and performance evaluation of the platform. The horizontal and vertical ground vibrations at the base of the building induced by nearby moving road vehicles are assumed to be stationary random processes. A typical three-story microelectronics building is selected as a case study. The case study shows that the vertical vibration of the microelectronics building is higher than the horizontal. The use of a hybrid control platform can effectively reduce both horizontal and vertical microvibrations of the microelectronics equipment to the level which satisfies the stringent microscale velocity requirement specified in the Bolt Beranek & Newman (BBN) criteria.展开更多
China's manned spaceflight missions have been introduced briefly,and the research planning of space sciences for China's Space Station(CSS) has been presented with the topics in the research areas,including:li...China's manned spaceflight missions have been introduced briefly,and the research planning of space sciences for China's Space Station(CSS) has been presented with the topics in the research areas,including:life science and biotechnology,microgravity fluid physics and combustion science,space material science,fundamental physics,space astronomy and astrophysics,earth sciences and application,space physics and space environment,experiments of new space technology.The research facilities,experiment racks,and supporting system planned in CSS have been described,including:multifunctional optical facility,research facility of quantum and optic transmission,and a dozen of research racks for space sciences in pressurized module,etc.In the next decade,significant breakthroughs in space science and utilization will hopefully be achieved,and great contributions will be made to satisfy the need of the social development and people's daily life.展开更多
A new simplified removable ground test-bed was designed for testing a certainturbofan engine. The facilities are 5.5 m long, 1.5 m wide, 2.2 m high and not more than 4. 5 t ofits empty weight. There are four rubber wh...A new simplified removable ground test-bed was designed for testing a certainturbofan engine. The facilities are 5.5 m long, 1.5 m wide, 2.2 m high and not more than 4. 5 t ofits empty weight. There are four rubber wheels that could be towed. There is an independentelectrical measurement and control system to test the rotational speed of rotors, the gas pressureof the compressor, the exhaust gas temperature, etc. Cooperated with the oil truck and the electricpower supply truck, the turbofan engine could be preserved on the ground and started to the idlingregime. While running, the parameter of the engine could be recorded, disposed and displayed. Inaddition, the facilities were successfully applied to the plateau experiment in order to researchhow the atmosphere pressure affects the start of engines. Some data are given in the paper.展开更多
As the pivotal test equipment of aero-engines design,finalization,improvement,modification,etc.,the Altitude Ground Test Facilities(AGTF)plays an important role in the research and development of the aero-engines.With...As the pivotal test equipment of aero-engines design,finalization,improvement,modification,etc.,the Altitude Ground Test Facilities(AGTF)plays an important role in the research and development of the aero-engines.With the rapid development of advanced high-performance aeroengine,the increasing demand of high-altitude simulation test is driving AGTF to improve its test ability and level of automation and intelligence.The modeling method,simulation tool,and control technology are the key factors to support the improvement of the AGTF control system.The main purpose of this paper is to provide an overview of modeling methods,simulation tools,and control technologies in AGTF control system for future research.First,it reviews the evolution of AGTF in the world,from the early formative stage to integration stage.Then,the mathematical modeling method of AGTF for control application is overviewed.Furthermore,the simulation tools used in the AGTF control system are overviewed from numerical simulation to hardware-in-loop simulation and further to semi-physical simulation.Meanwhile,the control technologies used in the AGTF control system are summarized from single-variable control to multivariable integrated control,and from classical control theory to modern control theory.Finally,recommendations for future research are outlined.Therefore,this review article provides extensive literature information for the modeling,simulation,and control design of AGTF for control application.展开更多
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2020R1I1A3067248).
文摘Prefabricated vertical drains(PVDs)are commonly used to shorten the drainage path for consolidation as part of the improvement of marine soft ground.Many studies that focus on the primary consolidation settlement of PVD-improved soft ground have been conducted;however,residual settlement has been scarcely investigated.Residual settlement is the net effect of secondary compression and the remaining primary consolidation and generally occurs while the facilities are operating.In this study,residual settlement was investigated using the measured field settlement data obtained from the surface settlement plate and multilayer settlement gauges.This study determined that PVD still has some effect on residual settlement and can reduce the settlement times.Residual settlement is only related to the PVD-improved soil layer and only occurs significantly in the middle zone of that layer over a few months.The middle zone may be related to the time delay of excess pore water pressure dissipation.This study concluded that the remaining primary consolidation in the PVD-improved soil layer is the primary cause of residual settlement,whereas secondary compression in the PVD-improved soil layer is only a minor cause.
基金CERG competitive research grant (Polyu 5054/02E) from Research Grants Council of Hong Kong, Area Strategic Development Programmer in Structural Control and Intelligent Buildings from The Hong Kong Polytechnic Universityand the Opening Research Foundation of the Beijing Key Laboratories (EESR2004-2) from Beijing University of Technology.
文摘A hybrid control platform is investigated in this paper to mitigate microvibrations to a group of vibration-sensitive equipment installed in a microelectronics facility subject to nearby road vehicle-induced horizontal and vertical ground motions. The hybrid control platform, on which microelectronics equipment is installed, is mounted on a building floor through a series of passive mounts and controlled by hydraulic actuators in both horizontal and vertical directions. The control platform is an elastic body with significant bending modes of vibration, and a sub-optimal control algorithm is used to manipulate the hydraulic actuators with actuator dynamics included. The finite element model and the equations of motion of the coupled platform-building system are then established in the absolute coordinate to facilitate the feedback control and performance evaluation of the platform. The horizontal and vertical ground vibrations at the base of the building induced by nearby moving road vehicles are assumed to be stationary random processes. A typical three-story microelectronics building is selected as a case study. The case study shows that the vertical vibration of the microelectronics building is higher than the horizontal. The use of a hybrid control platform can effectively reduce both horizontal and vertical microvibrations of the microelectronics equipment to the level which satisfies the stringent microscale velocity requirement specified in the Bolt Beranek & Newman (BBN) criteria.
文摘China's manned spaceflight missions have been introduced briefly,and the research planning of space sciences for China's Space Station(CSS) has been presented with the topics in the research areas,including:life science and biotechnology,microgravity fluid physics and combustion science,space material science,fundamental physics,space astronomy and astrophysics,earth sciences and application,space physics and space environment,experiments of new space technology.The research facilities,experiment racks,and supporting system planned in CSS have been described,including:multifunctional optical facility,research facility of quantum and optic transmission,and a dozen of research racks for space sciences in pressurized module,etc.In the next decade,significant breakthroughs in space science and utilization will hopefully be achieved,and great contributions will be made to satisfy the need of the social development and people's daily life.
文摘A new simplified removable ground test-bed was designed for testing a certainturbofan engine. The facilities are 5.5 m long, 1.5 m wide, 2.2 m high and not more than 4. 5 t ofits empty weight. There are four rubber wheels that could be towed. There is an independentelectrical measurement and control system to test the rotational speed of rotors, the gas pressureof the compressor, the exhaust gas temperature, etc. Cooperated with the oil truck and the electricpower supply truck, the turbofan engine could be preserved on the ground and started to the idlingregime. While running, the parameter of the engine could be recorded, disposed and displayed. Inaddition, the facilities were successfully applied to the plateau experiment in order to researchhow the atmosphere pressure affects the start of engines. Some data are given in the paper.
基金This study was co-supported by the National Science and Technology Major Project,China(No.J2019-V-0010-0104)Zhejiang Provincial Natural Science Foundation of China(No.LQ23E060007).
文摘As the pivotal test equipment of aero-engines design,finalization,improvement,modification,etc.,the Altitude Ground Test Facilities(AGTF)plays an important role in the research and development of the aero-engines.With the rapid development of advanced high-performance aeroengine,the increasing demand of high-altitude simulation test is driving AGTF to improve its test ability and level of automation and intelligence.The modeling method,simulation tool,and control technology are the key factors to support the improvement of the AGTF control system.The main purpose of this paper is to provide an overview of modeling methods,simulation tools,and control technologies in AGTF control system for future research.First,it reviews the evolution of AGTF in the world,from the early formative stage to integration stage.Then,the mathematical modeling method of AGTF for control application is overviewed.Furthermore,the simulation tools used in the AGTF control system are overviewed from numerical simulation to hardware-in-loop simulation and further to semi-physical simulation.Meanwhile,the control technologies used in the AGTF control system are summarized from single-variable control to multivariable integrated control,and from classical control theory to modern control theory.Finally,recommendations for future research are outlined.Therefore,this review article provides extensive literature information for the modeling,simulation,and control design of AGTF for control application.