Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in ...Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class-specific information of the test sample,which is very important for classification.For deformable images such as human faces,pixels at the same location of different images of the same subject usually have different intensities.Therefore,extracting features and correctly classifying such deformable objects is very hard.Moreover,the lighting,attitude and occlusion cause more difficulty.Considering the problems and challenges listed above,a novel image representation and classification algorithm is proposed.First,the authors’algorithm generates virtual samples by a non-linear variation method.This method can effectively extract the low-frequency information of space-domain features of the original image,which is very useful for representing deformable objects.The combination of the original and virtual samples is more beneficial to improve the clas-sification performance and robustness of the algorithm.Thereby,the authors’algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme.The weighting coefficients in the score fusion scheme are set entirely automatically.Finally,the algorithm classifies the samples based on the final scores.The experimental results show that our method performs better classification than conventional sparse representation algorithms.展开更多
How to represent a human face pattern?While it is presented in a continuous way in human visual system,computers often store and process it in a discrete manner with 2D arrays of pixels.The authors attempt to learn a ...How to represent a human face pattern?While it is presented in a continuous way in human visual system,computers often store and process it in a discrete manner with 2D arrays of pixels.The authors attempt to learn a continuous surface representation for face image with explicit function.First,an explicit model(EmFace)for human face representation is pro-posed in the form of a finite sum of mathematical terms,where each term is an analytic function element.Further,to estimate the unknown parameters of EmFace,a novel neural network,EmNet,is designed with an encoder-decoder structure and trained from massive face images,where the encoder is defined by a deep convolutional neural network and the decoder is an explicit mathematical expression of EmFace.The authors demonstrate that our EmFace represents face image more accurate than the comparison method,with an average mean square error of 0.000888,0.000936,0.000953 on LFW,IARPA Janus Benchmark-B,and IJB-C datasets.Visualisation results show that,EmFace has a higher representation performance on faces with various expressions,postures,and other factors.Furthermore,EmFace achieves reasonable performance on several face image processing tasks,including face image restoration,denoising,and transformation.展开更多
David Henry Hwang,the first and the only Asian American playwright ever to win Tony Award for Best Play,is best known for M.Butterfly.In his plays,David Henry Hwang shows concern on race,gender politics and identity.Y...David Henry Hwang,the first and the only Asian American playwright ever to win Tony Award for Best Play,is best known for M.Butterfly.In his plays,David Henry Hwang shows concern on race,gender politics and identity.Yellow Face,the latest play of Hwang,is a mockumentary drama which deals with cultural identity of Asian-Americans,and few researches and studies has been done on this play in China so far.This essay attempts to analyze the racial representations manifested in this play in order to explore its theme of the fluidity of cultural identity.展开更多
人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占...人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占比小造成的类内间距变化差距不明显的问题,在CAS-IA Web Face公开数据集的基础上对亚洲人脸数据进行扩充;其次,为解决不同口罩样式对特征提取的干扰,使用SSD人脸检测模型与DLIB人脸关键点检测模型提取人脸关键点,并利用人脸关键点与口罩的空间位置关系,额外随机生成不同的口罩人脸,组成混合数据集;最后,在混合数据集上进行模型训练并将训练好的模型移植到人脸识别系统中,进行检测速度与识别精度验证。实验结果表明,系统的实时识别速度达20 fps以上,人脸识别模型准确率在构建的混合数据集中达到97.1%,在随机抽取的部分LFW数据集验证的准确率达99.7%,故而该系统可满足实际应用需求,在一定程度上提高人脸识别的鲁棒性与准确性。展开更多
The purpose of this paper is to solve the problem of robust face recognition(FR) with single sample per person(SSPP). In the scenario of FR with SSPP, we present a novel model local robust sparse representation(LRSR) ...The purpose of this paper is to solve the problem of robust face recognition(FR) with single sample per person(SSPP). In the scenario of FR with SSPP, we present a novel model local robust sparse representation(LRSR) to tackle the problem of query images with various intra-class variations,e.g., expressions, illuminations, and occlusion. FR with SSPP is a very difficult challenge due to lacking of information to predict the possible intra-class variation of the query images.The key idea of the proposed method is to combine a local sparse representation model and a patch-based generic variation dictionary learning model to predict the possible facial intraclass variation of the query images. The experimental results on the AR database, Extended Yale B database, CMU-PIE database and LFW database show that the proposed method is robust to intra-class variations in FR with SSPP, and outperforms the state-of-art approaches.展开更多
Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and pos...Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR).展开更多
This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple tech...This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple technique, it is applied to eigenface classification. Experimental results on the ORL face database show that it improves performance by around 6 points, in classification rate, over the Euclidean distance classifier.展开更多
The laser speckle interferometry approach provides the possibility of an in situ optical noncontacted measurement for the surface morphology of plasma facing components(PFCs),and the reconstruction image of the PFC su...The laser speckle interferometry approach provides the possibility of an in situ optical noncontacted measurement for the surface morphology of plasma facing components(PFCs),and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm.A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST.The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image.The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.展开更多
Midface injuries are normally the result of high forces impacted on the face, that can bypass the power of the connection buttresses, which are thick and strong, base of skull is also a rigid and toughstructure which ...Midface injuries are normally the result of high forces impacted on the face, that can bypass the power of the connection buttresses, which are thick and strong, base of skull is also a rigid and toughstructure which requires significant forces to break. In our case, multiple midface and cranial base fractures are presented, which reflect injury caused by high forces and normally, these result in instability in the facial skeleton, or cause CSF rhinorrhea, or sharp spicules to endanger the orbit or the anterior cranial fossa, or the presence of any other indication of surgery. It is unusual to find such an extent of facial trauma and such a multiplication of fractures on the midface and cranial base levels, yet they were stable enough and without a real indication to require surgical interference.展开更多
The proposed method for low-dimensional illumination space representation (LDISR) of human faces can not only synthesize a virtual face image when given lighting conditions but also estimate lighting conditions when g...The proposed method for low-dimensional illumination space representation (LDISR) of human faces can not only synthesize a virtual face image when given lighting conditions but also estimate lighting conditions when given a face image. The LDISR is based on the observation that 9 basis point light sources can represent almost arbitrary lighting conditions for face recognition application and di?erent human faces have a similar LDISR. The principal component analysis (PCA) and the nearest neighbor clustering method are adopted to obtain the 9 basis point light sources. The 9 basis images under the 9 basis point light sources are then used to construct an LDISR which can represent almost all face images under arbitrary lighting conditions. Illumination ratio image (IRI) is employed to generate virtual face images under diffierent illuminations. The LDISR obtained from face images of one person can be used for other people. Experimental results on image reconstruction and face recognition indicate the e?ciency of LDISR.展开更多
Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines...Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.展开更多
Most modern face recognition and classification systems mainly rely on hand-crafted image feature descriptors. In this paper, we propose a novel deep learning algorithm combining unsupervised and supervised learning n...Most modern face recognition and classification systems mainly rely on hand-crafted image feature descriptors. In this paper, we propose a novel deep learning algorithm combining unsupervised and supervised learning named deep belief network embedded with Softmax regress (DBNESR) as a natural source for obtaining additional, complementary hierarchical representations, which helps to relieve us from the complicated hand-crafted feature-design step. DBNESR first learns hierarchical representations of feature by greedy layer-wise unsupervised learning in a feed-forward (bottom-up) and back-forward (top-down) manner and then makes more efficient recognition with Softmax regress by supervised learning. As a comparison with the algorithms only based on supervised learning, we again propose and design many kinds of classifiers: BP, HBPNNs, RBF, HRBFNNs, SVM and multiple classification decision fusion classifier (MCDFC)—hybrid HBPNNs-HRBFNNs-SVM classifier. The conducted experiments validate: Firstly, the proposed DBNESR is optimal for face recognition with the highest and most stable recognition rates;second, the algorithm combining unsupervised and supervised learning has better effect than all supervised learning algorithms;third, hybrid neural networks have better effect than single model neural network;fourth, the average recognition rate and variance of these algorithms in order of the largest to the smallest are respectively shown as DBNESR, MCDFC, SVM, HRBFNNs, RBF, HBPNNs, BP and BP, RBF, HBPNNs, HRBFNNs, SVM, MCDFC, DBNESR;at last, it reflects hierarchical representations of feature by DBNESR in terms of its capability of modeling hard artificial intelligent tasks.展开更多
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita...Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.展开更多
Active exploitation of solar energy is achieved in systems that absorb this energy through flat collectors. Hot water can be used for space heating, when its temperature is high, but it is used largely for DHW (domes...Active exploitation of solar energy is achieved in systems that absorb this energy through flat collectors. Hot water can be used for space heating, when its temperature is high, but it is used largely for DHW (domestic hot water) needs. Now days, this technology has resulted as the most viable for exploitation of solar energy, and various countries such as Israel, Turkey, and Greece provide hot water for residential and service sectors using systems of solar panels. In this proceeding we are writing about the dimension of the solar panels surface based to the net present value in Hotels of Albania.展开更多
Monogenic binary coding (MBC) have been known to be effective for local feature extraction, while sparse or collaborative representation based classification (CRC) has shown interesting results in robust face reco...Monogenic binary coding (MBC) have been known to be effective for local feature extraction, while sparse or collaborative representation based classification (CRC) has shown interesting results in robust face recognition. In this paper, a novel face recognition algorithm of fusing MBC and CRC named M-CRC is proposed; in which the dimensionality problem is resolved by projection matrix. The proposed algorithm is evaluated on benchmark face databases, including AR, PolyU-NIR and CAS-PEAL. The results indicate a significant increase in the performance when compared with state-of-the-art face recognition methods.展开更多
In this paper, we propose a face recognition approach-Structed Sparse Representation-based classification when the measurement of the test sample is less than the number training samples of each subject. When this con...In this paper, we propose a face recognition approach-Structed Sparse Representation-based classification when the measurement of the test sample is less than the number training samples of each subject. When this condition is not satisfied, we exploit Nearest Subspaee approach to classify the test sample. In order to adapt all the eases, we combine the two approaches to an adaptive classification method-Adaptive approach. The adaptive approach yields greater recognition accuracy than the SRC approach and CRC_RLS approach with low ~ample rate on the Extend Yale B dataset. And it is more efficient than other two approaches.展开更多
文摘Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class-specific information of the test sample,which is very important for classification.For deformable images such as human faces,pixels at the same location of different images of the same subject usually have different intensities.Therefore,extracting features and correctly classifying such deformable objects is very hard.Moreover,the lighting,attitude and occlusion cause more difficulty.Considering the problems and challenges listed above,a novel image representation and classification algorithm is proposed.First,the authors’algorithm generates virtual samples by a non-linear variation method.This method can effectively extract the low-frequency information of space-domain features of the original image,which is very useful for representing deformable objects.The combination of the original and virtual samples is more beneficial to improve the clas-sification performance and robustness of the algorithm.Thereby,the authors’algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme.The weighting coefficients in the score fusion scheme are set entirely automatically.Finally,the algorithm classifies the samples based on the final scores.The experimental results show that our method performs better classification than conventional sparse representation algorithms.
基金National Natural Science Foundation of China,Grant/Award Number:92370117。
文摘How to represent a human face pattern?While it is presented in a continuous way in human visual system,computers often store and process it in a discrete manner with 2D arrays of pixels.The authors attempt to learn a continuous surface representation for face image with explicit function.First,an explicit model(EmFace)for human face representation is pro-posed in the form of a finite sum of mathematical terms,where each term is an analytic function element.Further,to estimate the unknown parameters of EmFace,a novel neural network,EmNet,is designed with an encoder-decoder structure and trained from massive face images,where the encoder is defined by a deep convolutional neural network and the decoder is an explicit mathematical expression of EmFace.The authors demonstrate that our EmFace represents face image more accurate than the comparison method,with an average mean square error of 0.000888,0.000936,0.000953 on LFW,IARPA Janus Benchmark-B,and IJB-C datasets.Visualisation results show that,EmFace has a higher representation performance on faces with various expressions,postures,and other factors.Furthermore,EmFace achieves reasonable performance on several face image processing tasks,including face image restoration,denoising,and transformation.
文摘David Henry Hwang,the first and the only Asian American playwright ever to win Tony Award for Best Play,is best known for M.Butterfly.In his plays,David Henry Hwang shows concern on race,gender politics and identity.Yellow Face,the latest play of Hwang,is a mockumentary drama which deals with cultural identity of Asian-Americans,and few researches and studies has been done on this play in China so far.This essay attempts to analyze the racial representations manifested in this play in order to explore its theme of the fluidity of cultural identity.
文摘人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占比小造成的类内间距变化差距不明显的问题,在CAS-IA Web Face公开数据集的基础上对亚洲人脸数据进行扩充;其次,为解决不同口罩样式对特征提取的干扰,使用SSD人脸检测模型与DLIB人脸关键点检测模型提取人脸关键点,并利用人脸关键点与口罩的空间位置关系,额外随机生成不同的口罩人脸,组成混合数据集;最后,在混合数据集上进行模型训练并将训练好的模型移植到人脸识别系统中,进行检测速度与识别精度验证。实验结果表明,系统的实时识别速度达20 fps以上,人脸识别模型准确率在构建的混合数据集中达到97.1%,在随机抽取的部分LFW数据集验证的准确率达99.7%,故而该系统可满足实际应用需求,在一定程度上提高人脸识别的鲁棒性与准确性。
基金supported in part by the National Natural Science Foundation of China(61673402,61273270,60802069)the Natural Science Foundation of Guangdong Province(2017A030311029,2016B010109002,2015B090912001,2016B010123005,2017B090909005)+1 种基金the Science and Technology Program of Guangzhou of China(201704020180,201604020024)the Fundamental Research Funds for the Central Universities of China
文摘The purpose of this paper is to solve the problem of robust face recognition(FR) with single sample per person(SSPP). In the scenario of FR with SSPP, we present a novel model local robust sparse representation(LRSR) to tackle the problem of query images with various intra-class variations,e.g., expressions, illuminations, and occlusion. FR with SSPP is a very difficult challenge due to lacking of information to predict the possible intra-class variation of the query images.The key idea of the proposed method is to combine a local sparse representation model and a patch-based generic variation dictionary learning model to predict the possible facial intraclass variation of the query images. The experimental results on the AR database, Extended Yale B database, CMU-PIE database and LFW database show that the proposed method is robust to intra-class variations in FR with SSPP, and outperforms the state-of-art approaches.
基金supported by the National Natural Science Foundation of China(6137901061772421)
文摘Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR).
文摘This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple technique, it is applied to eigenface classification. Experimental results on the ORL face database show that it improves performance by around 6 points, in classification rate, over the Euclidean distance classifier.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB109005)National Natural Science Foundation of China(Nos.11175035,11475039)Chinesisch-Deutsches Forschungs project(GZ768)
文摘The laser speckle interferometry approach provides the possibility of an in situ optical noncontacted measurement for the surface morphology of plasma facing components(PFCs),and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm.A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST.The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image.The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.
文摘Midface injuries are normally the result of high forces impacted on the face, that can bypass the power of the connection buttresses, which are thick and strong, base of skull is also a rigid and toughstructure which requires significant forces to break. In our case, multiple midface and cranial base fractures are presented, which reflect injury caused by high forces and normally, these result in instability in the facial skeleton, or cause CSF rhinorrhea, or sharp spicules to endanger the orbit or the anterior cranial fossa, or the presence of any other indication of surgery. It is unusual to find such an extent of facial trauma and such a multiplication of fractures on the midface and cranial base levels, yet they were stable enough and without a real indication to require surgical interference.
基金Supported by Open Foundation of National Laboratory of PatternRecognition, P.R.China.
文摘The proposed method for low-dimensional illumination space representation (LDISR) of human faces can not only synthesize a virtual face image when given lighting conditions but also estimate lighting conditions when given a face image. The LDISR is based on the observation that 9 basis point light sources can represent almost arbitrary lighting conditions for face recognition application and di?erent human faces have a similar LDISR. The principal component analysis (PCA) and the nearest neighbor clustering method are adopted to obtain the 9 basis point light sources. The 9 basis images under the 9 basis point light sources are then used to construct an LDISR which can represent almost all face images under arbitrary lighting conditions. Illumination ratio image (IRI) is employed to generate virtual face images under diffierent illuminations. The LDISR obtained from face images of one person can be used for other people. Experimental results on image reconstruction and face recognition indicate the e?ciency of LDISR.
基金supported by Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)the National Natural Science Foundation of China(Grant No.52279107)The authors are grateful for the support by the China Scholarship Council(CSC No.202206260203 and No.201906690049).
文摘Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.
文摘Most modern face recognition and classification systems mainly rely on hand-crafted image feature descriptors. In this paper, we propose a novel deep learning algorithm combining unsupervised and supervised learning named deep belief network embedded with Softmax regress (DBNESR) as a natural source for obtaining additional, complementary hierarchical representations, which helps to relieve us from the complicated hand-crafted feature-design step. DBNESR first learns hierarchical representations of feature by greedy layer-wise unsupervised learning in a feed-forward (bottom-up) and back-forward (top-down) manner and then makes more efficient recognition with Softmax regress by supervised learning. As a comparison with the algorithms only based on supervised learning, we again propose and design many kinds of classifiers: BP, HBPNNs, RBF, HRBFNNs, SVM and multiple classification decision fusion classifier (MCDFC)—hybrid HBPNNs-HRBFNNs-SVM classifier. The conducted experiments validate: Firstly, the proposed DBNESR is optimal for face recognition with the highest and most stable recognition rates;second, the algorithm combining unsupervised and supervised learning has better effect than all supervised learning algorithms;third, hybrid neural networks have better effect than single model neural network;fourth, the average recognition rate and variance of these algorithms in order of the largest to the smallest are respectively shown as DBNESR, MCDFC, SVM, HRBFNNs, RBF, HBPNNs, BP and BP, RBF, HBPNNs, HRBFNNs, SVM, MCDFC, DBNESR;at last, it reflects hierarchical representations of feature by DBNESR in terms of its capability of modeling hard artificial intelligent tasks.
基金supported by the National Natural Science Foundation of China(Nos.52279107 and 52379106)the Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co.,Ltd.,the Academician and Expert Workstation of Yunnan Province(No.202205AF150015)the Science and Technology Innovation Project of YCIC Group Co.,Ltd.(No.YCIC-YF-2022-15)。
文摘Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.
文摘Active exploitation of solar energy is achieved in systems that absorb this energy through flat collectors. Hot water can be used for space heating, when its temperature is high, but it is used largely for DHW (domestic hot water) needs. Now days, this technology has resulted as the most viable for exploitation of solar energy, and various countries such as Israel, Turkey, and Greece provide hot water for residential and service sectors using systems of solar panels. In this proceeding we are writing about the dimension of the solar panels surface based to the net present value in Hotels of Albania.
文摘Monogenic binary coding (MBC) have been known to be effective for local feature extraction, while sparse or collaborative representation based classification (CRC) has shown interesting results in robust face recognition. In this paper, a novel face recognition algorithm of fusing MBC and CRC named M-CRC is proposed; in which the dimensionality problem is resolved by projection matrix. The proposed algorithm is evaluated on benchmark face databases, including AR, PolyU-NIR and CAS-PEAL. The results indicate a significant increase in the performance when compared with state-of-the-art face recognition methods.
基金Supported by National Natural Science Foundation of China(No.61170324 and No.61100105)
文摘In this paper, we propose a face recognition approach-Structed Sparse Representation-based classification when the measurement of the test sample is less than the number training samples of each subject. When this condition is not satisfied, we exploit Nearest Subspaee approach to classify the test sample. In order to adapt all the eases, we combine the two approaches to an adaptive classification method-Adaptive approach. The adaptive approach yields greater recognition accuracy than the SRC approach and CRC_RLS approach with low ~ample rate on the Extend Yale B dataset. And it is more efficient than other two approaches.