Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Fo...Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Forestry and Other Land Use Change (FOLU) subsector in Malawi. The results indicate that “forestland to cropland,” and “wetland to cropland,” were the major land use changes from the year 2000 to the year 2022. The forestland steadily declined at a rate of 13,591 ha (0.5%) per annum. Similarly, grassland declined at the rate of 1651 ha (0.5%) per annum. On the other hand, cropland, wetland, and settlements steadily increased at the rate of 8228 ha (0.14%);5257 ha (0.17%);and 1941 ha (8.1%) per annum, respectively. Furthermore, the results indicate that the “grassland to forestland” changes were higher than the “forestland to grassland” changes, suggesting that forest regrowth was occurring. On the emission factor, the results interestingly indicate that there was a significant increase in carbon sequestration in the FOLU subsector from the year 2011 to 2022. Carbon sequestration increased annually by 13.66 ± 0.17 tCO<sub>2</sub> e/ha/yr (4.6%), with an uncertainty of 2.44%. Therefore, it can be concluded that there is potential for a Carbon market in Malawi.展开更多
We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an ...We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an on-load tapchanger(OLTC) and transmission lines. The system power factor(PF) regulation and reactive power dispatching are indispensable to improve power quality. Our control method uses predictive weather and load data to decide engaging or tripping the shunt capacitor, or reactive power injection by the photovoltaic-inverter system, ultimately to keep the system PF in a good range. From the perspective of economics, the economical model is considered as a decision maker in our predictive data control method.Capacitor-only control strategy is a common photovoltaic(PV)regulation method, which is treated as a baseline case. Simulations with GridLAB-D on profiled loads and residential loads have been carried out. The comparison results with baseline control strategy and our predictive data control method show the appreciable economical benefit of our method.展开更多
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ...Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.展开更多
There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Im...There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Impingement). Therefore, nuclear power plants implement inspection programs to detect and control damages caused by such mechanisms. UT (Ultrasonic Test), one of the non-destructive tests, is the most commonly used method for inspecting the integrity of piping components. According to the management plan, several hundred components, being composed of as many as 100 to 300 inspection data points, are inspected during every RFO (Re-Fueling Outage). To acquire UT data of components, a large amount of expense is incurred. It is, however, difficult to find a proper method capable of verifying the reliability of UT data prior to the wear rate evaluation. This study describes the review of UT evaluation process and the influence of UT measurement error. It is explored that SAM (Square Average Method), which was suggested as a method for reliability analysis in the previous study, is found to be suitable for the determination whether the measured thickness is acceptable or not. And, safety factors are proposed herein through the statistical analysis taking into account the components’ type.展开更多
Taking the relevant data of 27 provinces in China during 2013 and 2017 as samples,this paper firstly measured the agricultural total factor productivity( TFP) using Malmquist index method. Then,it built the panel data...Taking the relevant data of 27 provinces in China during 2013 and 2017 as samples,this paper firstly measured the agricultural total factor productivity( TFP) using Malmquist index method. Then,it built the panel data model,and empirically tested the impacts of agricultural TFP on the income gap between urban and rural residents. The results show that the improvement in agricultural TFP can promote the narrowing of the income gap between urban and rural residents,and the factors such as urbanization level and industrial structure also have significant impacts on the income gap between urban and rural residents. On the basis of these,it came up with recommendations,including increasing agricultural human capital investment and establishing agricultural production research institutions.展开更多
The public has shown great interest in the data factor and data transactions,but the current attention is overly focused on personal behavioral data and transactions happening at Data Exchanges.To deliver a complete p...The public has shown great interest in the data factor and data transactions,but the current attention is overly focused on personal behavioral data and transactions happening at Data Exchanges.To deliver a complete picture of data flaw and transaction,this paper presents a systematic overview of the flow and transaction of personal,corporate and public data on the basis of data factor classification from various perspectives.By utilizing various sources of information,this paper estimates the volume of data generation&storage and the volume&trend of data market transactions for major economies in the world with the following findings:(i)Data classification is diverse due to a broad variety of applying scenarios,and data transaction and profit distribution are complex due to heterogenous entities,ownerships,information density and other attributes of different data types.(ii)Global data transaction has presented with the characteristics of productization,servitization and platform-based mode.(iii)For major economies,there is a commonly observed disequilibrium between data generation scale and storage scale,which is particularly striking for China.(i^v)The global data market is in a nascent stage of rapid development with a transaction volume of about 100 billion US dollars,and China s data market is even more underdeveloped and only accounts for some 10%of the world total.All sectors of the society should be flly aware of the diversity and complexity of data factor classification and data transactions,as well as the arduous and long-term nature of developing and improving relevant institutional systems.Adapting to such features,efforts should be made to improve data classification,enhance computing infrastructure development,foster professional data transaction and development institutions,and perfect the data governance system.展开更多
Background Combinations of coronary heart disease(CHD) and other chronic conditions complicate clinical management and increase healthcare costs. The aim of this study was to evaluate gender-specific relationships bet...Background Combinations of coronary heart disease(CHD) and other chronic conditions complicate clinical management and increase healthcare costs. The aim of this study was to evaluate gender-specific relationships between CHD and other comorbidities. Methods We analyzed data from the German Health Interview and Examination Survey(DEGS1), a national survey of 8152 adults aged 18-79 years. Female and male participants with self-reported CHD were compared for 23 chronic medical conditions. Regression models were applied to determine potential associations between CHD and these 23 conditions. Results The prevalence of CHD was 9%(547 participants): 34%(185) were female CHD participants and 66%(362) male. In women, CHD was associated with hypertension(OR = 3.28(1.81-5.9)), lipid disorders(OR = 2.40(1.50-3.83)), diabetes mellitus(OR = 2.08(1.24-3.50)), kidney disease(OR = 2.66(1.101-6.99)), thyroid disease(OR = 1.81(1.18-2.79)), gout/high uric acid levels(OR = 2.08(1.22-3.56)) and osteoporosis(OR = 1.69(1.01-2.84)). In men, CHD patients were more likely to have hypertension(OR = 2.80(1.94-4.04)), diabetes mellitus(OR = 1.87(1.29-2.71)), lipid disorder(OR = 1.82(1.34-2.47)), and chronic kidney disease(OR = 3.28(1.81-5.9)). Conclusion Our analysis revealed two sets of chronic conditions associated with CHD. The first set occurred in both women and men, and comprised known risk factors: hypertension, lipid disorders, kidney disease, and diabetes mellitus. The second set appeared unique to women: thyroid disease, osteoporosis, and gout/high uric acid. Identification of shared and unique gender-related associations between CHD and other conditions provides potential to tailor screening, preventive, and therapeutic options.展开更多
The on-line diameter measurement of larger axis workpieces is hard to achieve high precision detection, because of the bad environment of locale, the problem to amend the measuring error by non-uniform temperature fie...The on-line diameter measurement of larger axis workpieces is hard to achieve high precision detection, because of the bad environment of locale, the problem to amend the measuring error by non-uniform temperature field, and the difficulty to collimate and locate by usual method. By improving the measurement accuracy of larger axis accessories, it is useful to raise axis and hole's industry produce level. Because of the influence of complex environment in locale and some influential factors which are hard excluded from the large diameter measurement with multi-rolling-wheels method, the measurement results may not support or even contradict each other. To the situation, this paper puts forward a mutual support deviation distinguish data fusion method, including mutual support deviation detection and weight data fusion. The mutual support deviation detection part can effectively remove or weaken the unexpected impact on the measurement results and the weight data fusion part can get more accurate estimate result to the detected data. So the method can further improve the reliability of measurement results and increase the accuracy of the measurement system. By using the weight data fusion based on the mutual support (DFMS) to the simulation and experiment data, both simulation results and experiment results show that the method can effectively distinguish the data influenced by unexpected impact and improve the stability and reliability of measurement results. The new provided mutual support deviation distinguish method can be used to single sensor measurement and multi-sensor measurement, and can be used as a reference in the data distinguish of other area. The DFMS is helpful to realize the diameter measurement expanded uncertainty in 5 ×10^-6D or even higher when the measured axis workpiece's diameter is 1-5 m ( 1 m ≤ D ≤5 m ).展开更多
文摘Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Forestry and Other Land Use Change (FOLU) subsector in Malawi. The results indicate that “forestland to cropland,” and “wetland to cropland,” were the major land use changes from the year 2000 to the year 2022. The forestland steadily declined at a rate of 13,591 ha (0.5%) per annum. Similarly, grassland declined at the rate of 1651 ha (0.5%) per annum. On the other hand, cropland, wetland, and settlements steadily increased at the rate of 8228 ha (0.14%);5257 ha (0.17%);and 1941 ha (8.1%) per annum, respectively. Furthermore, the results indicate that the “grassland to forestland” changes were higher than the “forestland to grassland” changes, suggesting that forest regrowth was occurring. On the emission factor, the results interestingly indicate that there was a significant increase in carbon sequestration in the FOLU subsector from the year 2011 to 2022. Carbon sequestration increased annually by 13.66 ± 0.17 tCO<sub>2</sub> e/ha/yr (4.6%), with an uncertainty of 2.44%. Therefore, it can be concluded that there is potential for a Carbon market in Malawi.
文摘We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an on-load tapchanger(OLTC) and transmission lines. The system power factor(PF) regulation and reactive power dispatching are indispensable to improve power quality. Our control method uses predictive weather and load data to decide engaging or tripping the shunt capacitor, or reactive power injection by the photovoltaic-inverter system, ultimately to keep the system PF in a good range. From the perspective of economics, the economical model is considered as a decision maker in our predictive data control method.Capacitor-only control strategy is a common photovoltaic(PV)regulation method, which is treated as a baseline case. Simulations with GridLAB-D on profiled loads and residential loads have been carried out. The comparison results with baseline control strategy and our predictive data control method show the appreciable economical benefit of our method.
基金supported by the National Nature Science Foundation of China(Grant No.71401052)the National Social Science Foundation of China(Grant No.17BGL156)the Key Project of the National Social Science Foundation of China(Grant No.14AZD024)
文摘Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.
文摘There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Impingement). Therefore, nuclear power plants implement inspection programs to detect and control damages caused by such mechanisms. UT (Ultrasonic Test), one of the non-destructive tests, is the most commonly used method for inspecting the integrity of piping components. According to the management plan, several hundred components, being composed of as many as 100 to 300 inspection data points, are inspected during every RFO (Re-Fueling Outage). To acquire UT data of components, a large amount of expense is incurred. It is, however, difficult to find a proper method capable of verifying the reliability of UT data prior to the wear rate evaluation. This study describes the review of UT evaluation process and the influence of UT measurement error. It is explored that SAM (Square Average Method), which was suggested as a method for reliability analysis in the previous study, is found to be suitable for the determination whether the measured thickness is acceptable or not. And, safety factors are proposed herein through the statistical analysis taking into account the components’ type.
文摘Taking the relevant data of 27 provinces in China during 2013 and 2017 as samples,this paper firstly measured the agricultural total factor productivity( TFP) using Malmquist index method. Then,it built the panel data model,and empirically tested the impacts of agricultural TFP on the income gap between urban and rural residents. The results show that the improvement in agricultural TFP can promote the narrowing of the income gap between urban and rural residents,and the factors such as urbanization level and industrial structure also have significant impacts on the income gap between urban and rural residents. On the basis of these,it came up with recommendations,including increasing agricultural human capital investment and establishing agricultural production research institutions.
文摘The public has shown great interest in the data factor and data transactions,but the current attention is overly focused on personal behavioral data and transactions happening at Data Exchanges.To deliver a complete picture of data flaw and transaction,this paper presents a systematic overview of the flow and transaction of personal,corporate and public data on the basis of data factor classification from various perspectives.By utilizing various sources of information,this paper estimates the volume of data generation&storage and the volume&trend of data market transactions for major economies in the world with the following findings:(i)Data classification is diverse due to a broad variety of applying scenarios,and data transaction and profit distribution are complex due to heterogenous entities,ownerships,information density and other attributes of different data types.(ii)Global data transaction has presented with the characteristics of productization,servitization and platform-based mode.(iii)For major economies,there is a commonly observed disequilibrium between data generation scale and storage scale,which is particularly striking for China.(i^v)The global data market is in a nascent stage of rapid development with a transaction volume of about 100 billion US dollars,and China s data market is even more underdeveloped and only accounts for some 10%of the world total.All sectors of the society should be flly aware of the diversity and complexity of data factor classification and data transactions,as well as the arduous and long-term nature of developing and improving relevant institutional systems.Adapting to such features,efforts should be made to improve data classification,enhance computing infrastructure development,foster professional data transaction and development institutions,and perfect the data governance system.
文摘Background Combinations of coronary heart disease(CHD) and other chronic conditions complicate clinical management and increase healthcare costs. The aim of this study was to evaluate gender-specific relationships between CHD and other comorbidities. Methods We analyzed data from the German Health Interview and Examination Survey(DEGS1), a national survey of 8152 adults aged 18-79 years. Female and male participants with self-reported CHD were compared for 23 chronic medical conditions. Regression models were applied to determine potential associations between CHD and these 23 conditions. Results The prevalence of CHD was 9%(547 participants): 34%(185) were female CHD participants and 66%(362) male. In women, CHD was associated with hypertension(OR = 3.28(1.81-5.9)), lipid disorders(OR = 2.40(1.50-3.83)), diabetes mellitus(OR = 2.08(1.24-3.50)), kidney disease(OR = 2.66(1.101-6.99)), thyroid disease(OR = 1.81(1.18-2.79)), gout/high uric acid levels(OR = 2.08(1.22-3.56)) and osteoporosis(OR = 1.69(1.01-2.84)). In men, CHD patients were more likely to have hypertension(OR = 2.80(1.94-4.04)), diabetes mellitus(OR = 1.87(1.29-2.71)), lipid disorder(OR = 1.82(1.34-2.47)), and chronic kidney disease(OR = 3.28(1.81-5.9)). Conclusion Our analysis revealed two sets of chronic conditions associated with CHD. The first set occurred in both women and men, and comprised known risk factors: hypertension, lipid disorders, kidney disease, and diabetes mellitus. The second set appeared unique to women: thyroid disease, osteoporosis, and gout/high uric acid. Identification of shared and unique gender-related associations between CHD and other conditions provides potential to tailor screening, preventive, and therapeutic options.
基金supported by Focus of the Funding Item of Metrology of Military Industry in National Defense of China in "Tenth-five-year" Project (Grant No. 60104208)
文摘The on-line diameter measurement of larger axis workpieces is hard to achieve high precision detection, because of the bad environment of locale, the problem to amend the measuring error by non-uniform temperature field, and the difficulty to collimate and locate by usual method. By improving the measurement accuracy of larger axis accessories, it is useful to raise axis and hole's industry produce level. Because of the influence of complex environment in locale and some influential factors which are hard excluded from the large diameter measurement with multi-rolling-wheels method, the measurement results may not support or even contradict each other. To the situation, this paper puts forward a mutual support deviation distinguish data fusion method, including mutual support deviation detection and weight data fusion. The mutual support deviation detection part can effectively remove or weaken the unexpected impact on the measurement results and the weight data fusion part can get more accurate estimate result to the detected data. So the method can further improve the reliability of measurement results and increase the accuracy of the measurement system. By using the weight data fusion based on the mutual support (DFMS) to the simulation and experiment data, both simulation results and experiment results show that the method can effectively distinguish the data influenced by unexpected impact and improve the stability and reliability of measurement results. The new provided mutual support deviation distinguish method can be used to single sensor measurement and multi-sensor measurement, and can be used as a reference in the data distinguish of other area. The DFMS is helpful to realize the diameter measurement expanded uncertainty in 5 ×10^-6D or even higher when the measured axis workpiece's diameter is 1-5 m ( 1 m ≤ D ≤5 m ).