This paper provides a survey on recent developments in structural changes for high dimensional factor models. Compared with conventional low-dimensional time series, structural changes in factor models are more compli...This paper provides a survey on recent developments in structural changes for high dimensional factor models. Compared with conventional low-dimensional time series, structural changes in factor models are more complicated due to the unobservability of factors and factor loadings. The following topics are covered in this survey: the identification conditions for the structural changes in the factor loadings, different impacts of big and small breaks in factor models, tests for structural changes in the factor loadings of a specific variable, tests for structural changes in the factor loading matrix, joint tests for structural changes in the factor loadings and coefficients in factor-augmented regressions, tests for smooth changes in the factor loadings, estimation of break dates, and model selection in factor models with structural changes via the shrinkage method.展开更多
In the paper, a general framework for large scale modeling of macroeconomic and financial time series is introduced. The proposed approach is characterized by simplicity of implementation, performing well independentl...In the paper, a general framework for large scale modeling of macroeconomic and financial time series is introduced. The proposed approach is characterized by simplicity of implementation, performing well independently of persistence and heteroskedasticity properties, accounting for common deterministic and stochastic factors. Monte Carlo results strongly support the proposed methodology, validating its use also for relatively small cross-sectional and temporal samples.展开更多
Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importanc...Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importance of structure-based.Aims:Our objectives were to define the direction of structure-based forest management.Subsequently,we investigated the relationships between forest structure and the regeneration,growth,and mortality of trees under different thinning treatments.Ultimately,the drivers of forest structural change were explored.Methods:On the basis of 92 sites selected from northeastern China,with different recovery time (from 1 to 15years) and different thinning intensities (0–59.9%) since the last thinning.Principal component analysis (PCA)identified relationships among factors determining forest spatial structure.The structural equation model (SEM)was used to analyze the driving factors behind the changes in forest spatial structure after thinning.Results:Light thinning (0–20%trees removed) promoted forest regeneration,and heavy thinning (over 35% of trees removed) facilitated forest growth.However,only moderate thinning (20%–35%trees removed) created a reasonable spatial structure.While dead trees were clustered,and they were hardly affected by thinning intensity.Additionally,thinning intensity,recovery time,and altitude indirectly improve the spatial structure of the forest by influencing diameter at breast height (DBH) and canopy area.Conclusion:Creating larger DBH and canopy area through thinning will promote the formation of complex forest structures,which cultivates healthy and stable forests.展开更多
文摘This paper provides a survey on recent developments in structural changes for high dimensional factor models. Compared with conventional low-dimensional time series, structural changes in factor models are more complicated due to the unobservability of factors and factor loadings. The following topics are covered in this survey: the identification conditions for the structural changes in the factor loadings, different impacts of big and small breaks in factor models, tests for structural changes in the factor loadings of a specific variable, tests for structural changes in the factor loading matrix, joint tests for structural changes in the factor loadings and coefficients in factor-augmented regressions, tests for smooth changes in the factor loadings, estimation of break dates, and model selection in factor models with structural changes via the shrinkage method.
文摘In the paper, a general framework for large scale modeling of macroeconomic and financial time series is introduced. The proposed approach is characterized by simplicity of implementation, performing well independently of persistence and heteroskedasticity properties, accounting for common deterministic and stochastic factors. Monte Carlo results strongly support the proposed methodology, validating its use also for relatively small cross-sectional and temporal samples.
基金financially supported by the Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University,grant number:LYGC202117the China Scholarship Council(CSC),grant number:202306600046+1 种基金the Research and Development Plan of Applied Technology in Heilongjiang Province of China,grant number:GA19C006Research and Demonstration on Functional Improvement Technology of Forest Ecological Security Barrier in Heilongjiang Province,grant number:GA21C030。
文摘Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importance of structure-based.Aims:Our objectives were to define the direction of structure-based forest management.Subsequently,we investigated the relationships between forest structure and the regeneration,growth,and mortality of trees under different thinning treatments.Ultimately,the drivers of forest structural change were explored.Methods:On the basis of 92 sites selected from northeastern China,with different recovery time (from 1 to 15years) and different thinning intensities (0–59.9%) since the last thinning.Principal component analysis (PCA)identified relationships among factors determining forest spatial structure.The structural equation model (SEM)was used to analyze the driving factors behind the changes in forest spatial structure after thinning.Results:Light thinning (0–20%trees removed) promoted forest regeneration,and heavy thinning (over 35% of trees removed) facilitated forest growth.However,only moderate thinning (20%–35%trees removed) created a reasonable spatial structure.While dead trees were clustered,and they were hardly affected by thinning intensity.Additionally,thinning intensity,recovery time,and altitude indirectly improve the spatial structure of the forest by influencing diameter at breast height (DBH) and canopy area.Conclusion:Creating larger DBH and canopy area through thinning will promote the formation of complex forest structures,which cultivates healthy and stable forests.