期刊文献+
共找到8,318篇文章
< 1 2 250 >
每页显示 20 50 100
Deep learning approaches to recover the plasma current density profile from the safety factor based on Grad–Shafranov solutions across multiple tokamaks
1
作者 张瀚予 周利娜 +6 位作者 刘钺强 郝广周 王硕 杨旭 苗雨田 段萍 陈龙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期17-28,共12页
Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that... Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that facilitates such a process.Both multilayer perceptron(MLP)-based NN and convolutional neural network(CNN)models are trained to map the q-profile to the plasma current density J-profile,and vice versa,while satisfying the Grad–Shafranov radial force balance constraint.When the initial target models are trained,using a database of semianalytically constructed numerical equilibria,an initial CNN with one convolutional layer is found to perform better than an initial MLP model.In particular,a trained initial CNN model can also predict the q-or J-profile for experimental tokamak equilibria.The performance of both initial target models is further improved by fine-tuning the training database,i.e.by adding realistic experimental equilibria with Gaussian noise.The fine-tuned target models,referred to as fine-tuned MLP and fine-tuned CNN,well reproduce the target q-or J-profile across multiple tokamak devices.As an important application,these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers,where the desired input quantity is the safety factor instead of the plasma current density. 展开更多
关键词 plasma equilibrium deep learning safety factor profile current density profile TOKAMAK
下载PDF
Factors associated with the incidence of patient falls in hospitals:A scoping review
2
作者 Nurul AINANI Andi Masyitha IRWAN 《Journal of Integrative Nursing》 2024年第2期117-126,共10页
When a patient falls within a hospital setting,there is a significant increase in the risk of severe injury or health complications.Recognizing factors associated with such falls is crucial to mitigate their impact on... When a patient falls within a hospital setting,there is a significant increase in the risk of severe injury or health complications.Recognizing factors associated with such falls is crucial to mitigate their impact on patient safety.This review seeks to analyze the factors contributing to patient falls in hospitals.The main goal is to enhance our understanding of the reasons behind these falls,enabling hospitals to devise more effective prevention strategies.This study reviewed literature published from 2013 to 2022,using the Arksey and O’Malley methodology for a scoping review.The research literature was searched from seven databases,namely,PubMed,ScienceDirect,Wiley Library,Garuda,Global Index Medicus,Emerald Insight,and Google Scholar.The inclusion criteria comprised both qualitative and quantitative primary and secondary data studies centered on hospitalized patients.Out of the 893 studies analyzed,23 met the criteria and were included in this review.Although there is not an abundance of relevant literature,this review identified several factors associated with falls in hospitals.These encompass environmental,patient,staff,and medical factors.This study offers valuable insights for hospitals and medical personnel aiming to enhance fall prevention practices.Effective prevention efforts should prioritize early identification of patient risk factors,enhancement of the care environment,thorough training for care staff,and vigilant supervision of high-risk patients.By comprehending the factors that contribute to patient falls,hospitals can bolster patient safety and mitigate the adverse effects of falls within the health-care setting. 展开更多
关键词 Associated factors patient falls patient safety
下载PDF
Assessment of Axial Power Peaking Factors in GHARR-1 LEU Core: A Decadal Simulation Analysis
3
作者 Emmanuel Kwame Ahiave Emmanuel Ampomah-Amoako +1 位作者 Rex Gyeabour Abrefah Mathew Asamoah 《World Journal of Nuclear Science and Technology》 CAS 2024年第1期72-85,共14页
This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the... This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy. 展开更多
关键词 GHARR-1 Power Peaking factor Nuclear Reactor safety Low Enriched Uranium Core Operational Longevity Thermal Hydraulics
下载PDF
Efficacy and safety of anti-vascular endothelial growth factor agents on corneal neovascularization: A meta-analysis
4
作者 Shih-Chung Lai El-Wui Loh +1 位作者 Du-I Chiou Chien-Tai Hong 《World Journal of Clinical Cases》 SCIE 2023年第30期7337-7349,共13页
BACKGROUND Corneal neovascularization(CoNV)is the second major cause of blindness.Vascular endothelial growth factor(VEGF)inhibitors,e.g.,bevacizumab,have been used to prevent CoNV.AIM We conducted an updated systemat... BACKGROUND Corneal neovascularization(CoNV)is the second major cause of blindness.Vascular endothelial growth factor(VEGF)inhibitors,e.g.,bevacizumab,have been used to prevent CoNV.AIM We conducted an updated systematic review and meta-analysis of clinical trials to examine the efficacy and safety of anti-VEGF in CoNV.METHODS A literature search was conducted using three electronic databases.Mean difference(MD),standard mean difference(SMD),and relative risk(RR)are used to estimate the effect size.RESULTS Nine randomized controlled and three non-randomized trials were obtained.The pooled results demonstrated a significant reduction of CoNV area/Length(SMD=-1.17,95%CI:-1.58 to-0.75),best corrected visual acuity(MD=-0.54,95%CI:-0.91 to-0.17),and graft rejection(RR=0.44,95%CI:0.24 to 0.8)and failure(RR=0.39,95%CI:0.19 to 0.78)rates in the anti-VEGF group than the placebo group.A non-significant reduction of the epithelial defect was also observed in the bevacizumab group compared with the placebo(RR=0.56,95%CI:0.30 to 1.06).Compared with a placebo,the unsynthesizable trials also support that bevacizumab improves visual acuity,CoNV,graft rejection,and failure rates.Trials reporting other comparisons revealed the superiority of combined remedy with bevacizumab compared to other treatments in reducing CoNV.CONCLUSION Anti-VEGF agents,mainly bevacizumab,are an effective and safe treatment for CoNV of all causes and prevent corneal graft rejection and failure in corneal transplantation. 展开更多
关键词 EFFICACY safety Anti-vascular endothelial growth factor agents Corneal neovascularization BEVACIZUMAB
下载PDF
Influence Factors for Safety Full Heading of Machine-transplanted Rice Seedlings in Cool-warm Rice Area
5
作者 王云华 周红萍 +3 位作者 王占红 梅贵华 平建芬 黄吉美 《Agricultural Science & Technology》 CAS 2016年第8期1796-1798,1899,共4页
[Objective] This study was conducted to discuss influence factors for safety full heading of machine-transplanted rice seedlings in cool-warm rice area. [Method] Effects of variety, seedling age and nitrogen fertilize... [Objective] This study was conducted to discuss influence factors for safety full heading of machine-transplanted rice seedlings in cool-warm rice area. [Method] Effects of variety, seedling age and nitrogen fertilizer dosage and strategy of machine-transplanted seedlings on safety full heading of machine-transplanted seedlings were investigated. [Result] During mechanized rice production in coolwarm rice area, mid-early-maturing cold-resistant varieties with growth periods no longer than 180 d could selected, and seedling age could controlled within 30-35 d; and the total amount of pure nitrogen should be less than 300 kg/hm^2, and the proportion of nitrogen fertilizer applied in later stages should be properly reduced. [Conclusion] Under this condition, safety full heading of rice is ensured, and the target yield is realized. 展开更多
关键词 RICE Machine-transplanted seedling safety full heading Influence factors
下载PDF
Optimizing slope safety factor prediction via stacking using sparrow search algorithm for multi-layer machine learning regression models 被引量:1
6
作者 SHUI Kuan HOU Ke-peng +2 位作者 HOU Wen-wen SUN Jun-long SUN Hua-fen 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2852-2868,共17页
The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration o... The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments. 展开更多
关键词 Multi-layer regression algorithm fusion Stacking gensemblelearning Sparrow search algorithm Slope safety factor Data prediction
下载PDF
Impact of Improving Design Factor over 0.72 on the Safety and Reliability of Gas Pipelines and Feasibility Justification 被引量:8
7
作者 ZHAO Xinwei ZHANG Guangli +1 位作者 LUO Jinheng ZHANG Hua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期166-172,共7页
Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress... Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress levels over 72% SMYS have not presented problems in USA and Canada, and design factor does not control incidents or the safety of pipelines. Enhancing pipeline safety management level is most important for decreasing incident rate. The application history of higher design factors in the U.S and Canada was reviewed. And the effect of higher factors to the critical flaw size, puncture resistance, change of reliability with time, risk level and the arrest toughness requirements of pipeline were analyzed here. The comparison of pipeline failure rates and risk levels between two design factors (0.72 and 0.8) has shown that a change in design factor from 0.72 to 0.8 would bring little effect on failure rates and risk levels. On the basis of the analysis result, the application feasibility of design factor of 0.8 in China was discussed and the related suggestions were proposed. When an operator wishes to apply design factor 0.8 to gas pipeline, the following process is recommended: stress level of line pipe hydro test should be up to 100% SMYS, reliability and risk assessment at the design feasibility or conceptual stage should be conducted, Charpy impact energy should meet the need of pipeline crack arrest; and establish and execute risk based integrity management plan. The technology of pipeline steel metallurgy, line pipe fabrication and pipeline construction, and line pipe quality control level in China achieved tremendous progresses, and line pipe product standards and property indexes have come up to international advanced level. Furthermore, pipeline safety management has improved greatly in China. Consequently, the research for the feasibility of application of design factor of 0.8 in China has fundamental basis. 展开更多
关键词 gas pipeline higher design factor safety and reliability risk integrity management
下载PDF
Comprehensive safety factor of roof in goaf underdeep high stress 被引量:8
8
作者 JIANG Li-chun JIAO Hua-zhe +1 位作者 WANG Yu-dan WANG Ge-ge 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期595-603,共9页
The safety factor of roof under deep high stress is a quantitative index for evaluating roof stability.Based on the failure mode of surrounding rock of stope roof,the mechanics model of goaf roof is constructed,and th... The safety factor of roof under deep high stress is a quantitative index for evaluating roof stability.Based on the failure mode of surrounding rock of stope roof,the mechanics model of goaf roof is constructed,and the internal force of roof is deduced by the theory of hingeless arch.The calculation method of roof safety factor(K)under the environment of deep mining is proposed in view of compression failure and shear failure of roof.The calculation formulas of shear safety factor(K1),compression safety factor(K2)and comprehensive safety factor(K)of roof are given.The influence of stope span and roof thickness on roof stability is considered in this paper.The results show that when the roof thickness remains constant,the roof safety factor decreases with the increasing of the stope span;when the stope span remains constant,the roof safety factor increases with the increasing of the roof thickness.The deep mining example shows that when the stope span is 30 m and the roof thickness is 10 m,the roof comprehensive safety factor is 1.12,which indicates the roof is in a stable state. 展开更多
关键词 deep mining high stress hingeless arch comprehensive safety factor stope span
下载PDF
Addressing Human Factors in Burnout and the Delivery of Healthcare: Quality & Safety Imperative of the Quadruple Aim 被引量:3
9
作者 Michael R. Privitera 《Health》 2018年第5期629-644,共16页
Human factors in the delivery of service are considered in many occupations of high impact on others such as airline industry and nuclear power industry, but not sufficiently in healthcare delivery. A common administr... Human factors in the delivery of service are considered in many occupations of high impact on others such as airline industry and nuclear power industry, but not sufficiently in healthcare delivery. A common administrative framework of healthcare involves focus upon costs, quality and patient satisfaction (The Triple Aim). Many industries which support healthcare and healthcare administrators do not have firsthand knowledge of the complexities in delivering care. As a result, the experience and human factors of providing care are often overlooked at high level decision-making unless incorporated into the healthcare delivery framework, proposed as the fourth aim of The Quadruple Aim framework. Research is pointing to consequent negative effects on quality, safety, joy, meaning and sustainability of healthcare practice. High acute occupational stress and chronic occupational stress can cause direct and indirect effects on safety and quality of care. The biological, psychological and social consequences of burnout from excessive acute and chronic occupational stress are more of a threat to healthcare than commonly acknowledged. Patient safety, quality of care and clinician well-being are inextricably linked. This report will describe the process of transition from The Triple Aim to The Quadruple Aim administrative framework of healthcare delivery at the University of Rochester Medical Center. Developing the fourth aim of improving the experience of providing care, had high acceptability and aligned with other health system goals of optimization of safety, quality, and performance by applying a human factors/ergonomic (HFE) framework that considers human capabilities and human limitations. The goal of HFE is to fit the healthcare system to the human instead of the human to the healthcare system. Concepts include removal of extraneous cognitive load, using clinician neural resource (brain power) optimally for highest order decision making in patient care. An integrative model of patient safety and clinician wellbeing is a product of this effort. 展开更多
关键词 BURNOUT Human factors Ergonomics safety CLINICIAN Wellbeing Quadruple AIM INTEGRATIVE Model
下载PDF
Three-dimensional stability of landslides based on local safety factor 被引量:4
10
作者 YANG Tao Man-chu Ronald YEUNG +2 位作者 YANG Bing LIU Yong-jiang YANG Yan-xin 《Journal of Mountain Science》 SCIE CSCD 2016年第9期1515-1526,共12页
Unlike the limit equilibrium method(LEM), with which only the global safety factor of the landslide can be calculated, a local safety factor(LSF) method is proposed to evaluate the stability of different sections of a... Unlike the limit equilibrium method(LEM), with which only the global safety factor of the landslide can be calculated, a local safety factor(LSF) method is proposed to evaluate the stability of different sections of a landslide in this paper. Based on three-dimensional(3D) numerical simulation results, the local safety factor is defined as the ratio of the shear strength of the soil at an element on the slip zone to the shear stress parallel to the sliding direction at that element. The global safety factor of the landslide is defined as the weighted average of all local safety factors based on the area of the slip surface. Some example analyses show that the results computed by the LSF method agree well with those calculated by the General Limit Equilibrium(GLE) method in two-dimensional(2D) models and the distribution of the LSF in the 3D slip zone is consistent with that indicated by the observed deformation pattern of an actual landslide in China. 展开更多
关键词 Landslide stability Local safety factor Stability analysis method Slip mechanism
下载PDF
Factor of safety of strain-softening slopes 被引量:4
11
作者 Hossein Rafiei Renani C.Derek Martin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期473-483,共11页
Stability analysis of strain-softening slopes is carried out using the shear strength reduction method and Mohr-Coulomb model with degrading cohesion and friction angle.The e ffect of strain-softening behavior on the ... Stability analysis of strain-softening slopes is carried out using the shear strength reduction method and Mohr-Coulomb model with degrading cohesion and friction angle.The e ffect of strain-softening behavior on the slope factor of safety is investigated by performing a series of analyses for various slope geometries and strength properties.Stability charts and equations are developed to estimate the factor of safety of strain-softe ning slopes from the results of traditional stability analysis based on perfectly-plastic behavior.Two example applications including an open pit mine in weak rock and clay shale slope with daylighting bedding planes are presented.The results of limit equilibrium analysis and shear strength reduction method with perfectly-plastic models were in close agreement.Using perfectly-plastic models with peak strength properties led to overly optimistic results while adopting residual strength properties gave excessively conservative outcomes.The shear strength reduction method with a strain-softening model gave realistic factors of safety while accounting for the process of strength degradation. 展开更多
关键词 Slope stability analysis factor of safety ratio Shear strength reduction Perfectly-plastic behavior Open pit slope Clay shale slope
下载PDF
An Evaluation of the Effects of Human Factors on Pilotage Operations Safety 被引量:2
12
作者 Hassan Oraith Eddie Blanco‑Davis +1 位作者 Zaili Yang Ben Matellini 《Journal of Marine Science and Application》 CSCD 2021年第3期393-409,共17页
In recent years,marine pilotage accidents occurring on a worldwide basis as a result of human error have not been ceased to transpire,despite advances in technology and a significant set of international conventions,r... In recent years,marine pilotage accidents occurring on a worldwide basis as a result of human error have not been ceased to transpire,despite advances in technology and a significant set of international conventions,regulations,and recommendations to reduce them.This paper aims to investigate the effect of human factors on the safety of maritime pilotage operations.The human factors that affect the operators who are performing ships’berthing operations have also been examined in detail.In this study,in order to determine the causes of human-related errors occurred in maritime pilotage accidents,a comprehensive literature review is carried out,and a considerable number of real past case examples and an analysis of the maritime accident investigation reports regarding pilotage operations events that occurred between 1995 and 2015 have been reviewed.To validate the identified humanrelated risk factors(HCFs)and explore other contributory factors,survey questionnaires and semi-structured interviews with domain experts have been conducted.A structural hierarchy diagram for the identified risk factors(HCFs)has been developed and validated through experienced experts belonging to the maritime sector.A questionnaire for pair-wise comparison is carried out and analysed using the analytic hierarchy process(AHP)approach to evaluate the weight and rank the importance of the identified human causal factors.The findings of this study will benefit the maritime industry,by identifying a new database on causal factors that are contributing to the occurrence of maritime pilotage disasters.The database can be used as a stand-alone reference or help implement effective risk reduction strategies to reduce the human error,that might occur during pilotage operations. 展开更多
关键词 Pilotage accidents Human factor Pilotage operations Maritime safety Analytic hierarchy process(AHP)
下载PDF
Immunological disturbance effect of exogenous histamine towards key immune cells
13
作者 Yanan Liu Huan Li +5 位作者 Chong Wang Shanjun Chen Renjie Lian Weiqiang Wang Linglin Fu Yanbo Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1856-1863,共8页
Histamine in food has attracted widespread attention due to the potential toxicity and associated health risk.However,its influences on immunological components,especially the function of key immune cells,are still po... Histamine in food has attracted widespread attention due to the potential toxicity and associated health risk.However,its influences on immunological components,especially the function of key immune cells,are still poorly known.In this work,we explored the effects of exogenous histamine on the function of key immune cells such as intestinal epithelial cells,dendritic cells,and T cells.The results showed that histamine could affect the expression of allergy-related genes in CMT93 cells at a high dose of histamine.Moreover,it’s found that histamine could cause an imbalance in the levels of relevant immune factors secreted by dendritic cells and T cells,especially those related to allergy.At the same time,the proportion of MHC class IIpositive dendritic cells and the proportion of T helper 2(Th2)cells in CD4^(+)T cells increased after histamine stimulation.We concluded that the presence of a certain level of histamine in food may affect the expression of allergy-related cytokines,disrupt the balance of the immune homeostasis,and potentially lead to adverse immune reactions.This work demonstrated the importance of including the estimation of histamine’s immune safety in aquatic products rather than merely considering the potential risk of food poisoning. 展开更多
关键词 HISTAMINE Immunological disturbance Food allergy Immune factor Edible safety
下载PDF
A Calculation Method of Double Strength Reduction for Layered Slope Based on the Reduction of Water Content Intensity
14
作者 Feng Shen Yang Zhao +1 位作者 Bingyi Li Kai Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期221-243,共23页
The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties... The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes. 展开更多
关键词 Double strength reduction slopes stability water content factor of safety numerical methods
下载PDF
Residual fatigue strength of 48MnV crankshaft based on safety factor
15
作者 王翔 陈铭 +1 位作者 浦耿强 王成焘 《Journal of Central South University》 SCIE EI CAS 2005年第S2期145-147,共3页
Residual fatigue strength of 48MnV crankshaft was studied and analyzed based on safety factor. Three different status crankshafts were used to the hop-up tests, which maintain new after 500h hop-up tests and after 1... Residual fatigue strength of 48MnV crankshaft was studied and analyzed based on safety factor. Three different status crankshafts were used to the hop-up tests, which maintain new after 500h hop-up tests and after 1000h hop-up tests. Then, crankshafts were cut into unit cranks. The unit cranks were used to do endurance bending tests to get the residual fatigue strength. Finally, the results were analyzed based on safety factor. The results show that safety factor of crankshaft descends a little with the increase of the running time, and the residual safety factor is still much bigger than the endurable safety factor. Furthermore, after the crankshaft accomplishes a full life cycle, the residual fatigue strength of the crankshaft is enough to remanufacture and fulfill the next life cycle. 展开更多
关键词 48MnV CRANKSHAFT RESIDUAL FATIGUE STRENGTH safety factor
下载PDF
Probabilistic Analysis of Slope Using Finite Element Approach and Limit Equilibrium Approach around Amalpata Landslide of West Central, Nepal
16
作者 Mahendra Acharya Khomendra Bhandari +2 位作者 Sandesh Dhakal Aasish Giri Prabin Kafle 《International Journal of Geosciences》 CAS 2024年第5期416-432,共17页
The stability study of the ongoing and recurring Amalpata landslide in Baglung in Nepal’s Gandaki Province is presented in this research. The impacted slope is around 200 meters high, with two terraces that have diff... The stability study of the ongoing and recurring Amalpata landslide in Baglung in Nepal’s Gandaki Province is presented in this research. The impacted slope is around 200 meters high, with two terraces that have different slope inclinations. The lower bench, located above the basement, consistently fails and sets others up for failure. The fluctuating water level of the slope, which travels down the slope masses, exacerbates the slide problem. The majority of these rocks are Amalpata landslide area experiences several structural disruptions. The area’s stability must be evaluated in order to prevent and control more harm from occurring to the nearby agricultural land and people living along the slope. The slopes’ failures increase the damages of house existing in nearby area and the erosion of the slope. Two modeling techniques the finite element approach and the limit equilibrium method were used to simulate the slope. The findings show that, in every case, the terrace above the basement is where the majority of the stress is concentrated, with a safety factor of near unity. Using probabilistic slope stability analysis, the failure probability was predicted to be between 98.90% and 100%. 展开更多
关键词 Finite Element Approach Limit Equilibrium Method SLOPE factor of safety
下载PDF
Toroidicity Dependence of Tokamak Edge Safety Factor and Shear
17
作者 石秉仁 《Plasma Science and Technology》 SCIE EI CAS CSCD 2003年第4期1849-1853,共5页
Using a simple analytical model equilibrium, the dependence of tokamak edge safety factor qedge which can be understood as qa for a limiter device or 595 for a divertor device, and the shear value are calculated and c... Using a simple analytical model equilibrium, the dependence of tokamak edge safety factor qedge which can be understood as qa for a limiter device or 595 for a divertor device, and the shear value are calculated and compared with the ITRE-recommended formula. This dependence relation is useful in designing the medium and small aspect ratio tokamaks and reactors. 展开更多
关键词 edge safety factor mhd stability small aspect ratio tokamak
下载PDF
Hysteresis of Dam Slope Safety Factor under Water Level Fluctuations Based on the LEM Coupled with FEM Method
18
作者 Guodong Liu Zhijun Zhou +1 位作者 Shiqiang Xu Wenjing Mi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第11期351-375,共25页
Water level variations have caused numerous dam slope collapse disasters around the world,illustrating the large influence of water level fluctuations on dam slopes.The required indoor tests were conducted and a numer... Water level variations have caused numerous dam slope collapse disasters around the world,illustrating the large influence of water level fluctuations on dam slopes.The required indoor tests were conducted and a numerical model of an actual earth-filled dam was constructed to investigate the influences of the water level fluctuation rate and the hysteresis of the soil-water characteristic curve(SWCC)on the stability of the upstream dam slope.The results revealed that the free surface in the dam body for the desorption SWCC during water level fluctuations was higher than that for the adsorption SWCC,which would be more evident at higher water levels.The safety factor of the upstream dam slope initially decreased and then increased for the most dangerous water level as the water level rose and fell.The water level fluctuation rate mainly influenced the initial section of the safety factor variation curve,while the SWCC hysteresis mainly affected the minimum safety factor of the water level fluctuations.The desorption SWCC is suggested for engineering design.Furthermore,a quick prediction method is proposed to estimate the safety factor of upstream dam slopes with identical structures. 展开更多
关键词 Water level SWCC safety factor dam slope HYSTERESIS
下载PDF
Analysis of Traffic Accidents in Vietnam
19
作者 Thi Yen Nguyen 《World Journal of Engineering and Technology》 2024年第3期522-528,共7页
Understanding the causes and solutions of road traffic accidents is important for developing road and action plans in a country. In Vietnam, awareness of traffic participants is the main cause of serious traffic accid... Understanding the causes and solutions of road traffic accidents is important for developing road and action plans in a country. In Vietnam, awareness of traffic participants is the main cause of serious traffic accidents. In recent years, the number of road traffic accidents in Tuyen Quang province with deaths has decreased, but the number of accidents has increased significantly. The article uses data on traffic accidents in Tuyen Quang over the (2016-2023) has been analytically reviewed. From there, analyze accident characteristics and causes of traffic accidents in Tuyen Quang province, and propose solutions to improve traffic safety in Tuyen Quang, Vietnam. The findings can be information for managers and researchers interested in studying the province of Tuyen Quang, Vietnam road traffic safety. Additionally, the findings have led the government to achieve national targets in reducing the number of accidents and serious injuries. 展开更多
关键词 Traffic safety Accident Cause Driver Behavior Human factor Traffic safety Policy
下载PDF
Relationship between critical seismic acceleration coefficient and static factor of safety of 3D slopes
20
作者 SHI He-yang CHEN Guang-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1546-1554,共9页
Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little att... Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little attention has been given to the relationship between the slope stability numbers and the critical seismic acceleration coefficient.This study aims to investigate the relationship between the static FoS and the critical seismic acceleration coefficient of soil slopes in the framework of the upper-bound limit analysis.Based on the 3D rotational failure mechanism,the critical seismic acceleration coefficient using the pseudo-static method and the static FoS using the strength reduction technique are first determined.Then,the relationship between the static FoS and the critical seismic acceleration coefficient is presented under considering the slope angleβ,the frictional angleφ,and the dimensionless coefficients B/H and c/γH.Finally,a fitting formula between the static FoS and the critical seismic acceleration coefficient is proposed and validated by analytical and numerical results. 展开更多
关键词 static safety of factor critical seismic acceleration coefficient upper-bound limit analysis 3D rotational failure mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部