1
|
因子von Neumann代数上的非线性(m,n)导子 |
费秀海
张建华
王中华
|
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
|
2015 |
4
|
|
2
|
因子von Neumann代数上的非线性中心化子 |
杨翠
吴冰
刘珍
|
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
|
2020 |
7
|
|
3
|
因子von Neumann代数上的正交可导映射 |
张芳娟
|
《纺织高校基础科学学报》
CAS
|
2011 |
4
|
|
4
|
因子von Neumann代数上非线性混合Jordan三重可导映射 |
庞永锋
张丹莉
马栋
|
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
|
2021 |
1
|
|
5
|
因子von Neumann代数上ξ-*-Lie同构的特征 |
王美丽
吉国兴
|
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
|
2017 |
0 |
|
6
|
因子Von Neumann代数上的可乘导子 |
杜炜
朱娴
马訾伟
|
《科技资讯》
|
2009 |
0 |
|
7
|
因子von Neumann代数上的(m,n)-三重导子 |
庞永锋
王权
魏银
|
《应用泛函分析学报》
|
2020 |
0 |
|
8
|
因子von Neumann代数中套子代数上的广义内导子 |
潘芳芳
韩胜伟
|
《山西师范大学学报(自然科学版)》
|
2006 |
0 |
|
9
|
因子von Neumann代数上完全保持交换性的映射 |
赵红利
黄丽
|
《太原科技大学学报》
|
2020 |
2
|
|
10
|
因子von Neumann代数上的非线性斜Jordan三重可导映射 |
宁彤
张建华
|
《吉林大学学报(理学版)》
CAS
北大核心
|
2020 |
0 |
|
11
|
群射影酉表示的von Neumann代数 |
李怡铮
侯成军
|
《曲阜师范大学学报(自然科学版)》
CAS
|
2011 |
0 |
|
12
|
因子von Neumann代数上完全保~*-Jordan零积的映射的研究 |
刘红玉
霍东华
|
《哈尔滨理工大学学报》
CAS
北大核心
|
2018 |
0 |
|
13
|
因子von Neumann代数正锥上的凸序列积自同构 |
卜浪梅
吉国兴
|
《数学学报(中文版)》
CSCD
北大核心
|
2024 |
0 |
|
14
|
因子von Neumann代数﹡-同构的一个特征 |
王美丽
吉国兴
|
《数学学报(中文版)》
SCIE
CSCD
北大核心
|
2015 |
1
|
|
15
|
算子代数上的Lie可导映射 |
安润玲
Kichi-Suke Saito
|
《数学物理学报(A辑)》
CSCD
北大核心
|
2014 |
2
|
|
16
|
von Neumann代数上保持混合Jordan三重η-积的非线性映射 |
庞永锋
张丹莉
马栋
|
《山东大学学报(理学版)》
CAS
CSCD
北大核心
|
2021 |
1
|
|
17
|
酉基和非交换小波 |
郭蔚
蔡娟
|
《河北师范大学学报(自然科学版)》
CAS
|
2003 |
0 |
|
18
|
冯诺依曼代数的建立与发展 |
杨浩菊
高眀杵
|
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
|
2017 |
0 |
|
19
|
关于强奇异极大交换子代数的几个注记 |
王利广
史可富
|
《曲阜师范大学学报(自然科学版)》
CAS
|
2006 |
1
|
|
20
|
Von Neumann代数套子代数上保因子交换性的线性映射 |
焦美艳
|
《数学学报(中文版)》
SCIE
CSCD
北大核心
|
2014 |
3
|
|