The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create ...The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions. This paper provides a view of this initiative from an automation systems perspective. In this context it considers how future automation systems might be effectively configured and supported through their lifecycles and how integration, application modelling, visualisation and reuse of such systems might be best achieved. The paper briefly describes limitations in current engineering methods, and new emerging approaches including the cyber physical systems (CPS) engineering tools being developed by the automation systems group (ASG) at Warwick Manufacturing Group, University of Warwick, UK.展开更多
We have reached the stage where fac-tory automation has become universallyaccepted but until recently the manufactur-er has concentrated his investment in newtechnology at the design and assembly sta-ges,or in other w...We have reached the stage where fac-tory automation has become universallyaccepted but until recently the manufactur-er has concentrated his investment in newtechnology at the design and assembly sta-ges,or in other words at the‘front end’ofthe production line.展开更多
基金support for this work from UK EPSRC,through the Knowledge-DrivenConfigurable Manufacturing (KDCM) research project under the Flexible and Reconfigurable Manufacturing Initiativefrom Innovate UK on the Direct Digital Deployment project, and from ARTEMIS on the Arrowhead project
文摘The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions. This paper provides a view of this initiative from an automation systems perspective. In this context it considers how future automation systems might be effectively configured and supported through their lifecycles and how integration, application modelling, visualisation and reuse of such systems might be best achieved. The paper briefly describes limitations in current engineering methods, and new emerging approaches including the cyber physical systems (CPS) engineering tools being developed by the automation systems group (ASG) at Warwick Manufacturing Group, University of Warwick, UK.
文摘We have reached the stage where fac-tory automation has become universallyaccepted but until recently the manufactur-er has concentrated his investment in newtechnology at the design and assembly sta-ges,or in other words at the‘front end’ofthe production line.