期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Framework and case study of cognitive maintenance in Industry 4.0 被引量:1
1
作者 Bao-rui LI Yi WANG +1 位作者 Guo-hong DAI Ke-sheng WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第11期1493-1504,共12页
We present a new framework for cognitive maintenance (CM) based on cyber-physical systems and advanced artificial intelligence techniques. These CM systems integrate intelligent deep learning approaches and intelligen... We present a new framework for cognitive maintenance (CM) based on cyber-physical systems and advanced artificial intelligence techniques. These CM systems integrate intelligent deep learning approaches and intelligent decision-making tech-niques, which can be used by maintenance professionals who are working with cutting-edge equipment. The systems will provide technical solutions to real-time online maintenance tasks, avoid outages due to equipment failures, and ensure the continuous and healthy operation of equipment and manufacturing assets. The implementation framework of CM consists of four modules, i.e., cyber-physical system, Internet of Things, data mining, and Internet of Services. In the data mining module, fault diagnosis and prediction are realized by deep learning methods. In the case study, the backlash error of cutting-edge machine tools is taken as an example. We use a deep belief network to predict the backlash of the machine tool, so as to predict the possible failure of the machine tool, and realize the strategy of CM. Through the case study, we discuss the significance of implementing CM for cutting-edge equipment, and the framework of CM implementation has been verified. Some CM system applications in manufacturing enterprises are summarized. 展开更多
关键词 Cognitive maintenance Industry 4.0 Cutting-edge equipment Deep learning Green monitor Smart manufacturing factory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部