Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase e...Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.展开更多
The different realistic propagation channels are faced frequently the multipath fading environments. The main goal of this system design (cognitive radio network) is to improve the efficiency of spectrum access on a n...The different realistic propagation channels are faced frequently the multipath fading environments. The main goal of this system design (cognitive radio network) is to improve the efficiency of spectrum access on a non-interfering basis. This system achieves high utilization for the limited spectrum in order to fulfill needs for all users’ demands which are considered as a problem in wireless communications due to rapidly increasing in wireless applications and service. This system is exposed to attack due to the vulnerabilities existence in this system. So, the main outcome of this paper is to investigate the performance of the cooperative sensing in cognitive radio networks under malicious attacks over different channel impairments, and to illustrate the most suitable individual probability of detection in real faded channel by using Nakagami model. This paper illustrates the effectiveness of the attacks and fading on the performance of spectrum sensing process.展开更多
Libya’s rebels face major challenges of unity when their many factions negotiate for power WHEN NATO jet fighters dropped the first bomb over Tripoli on March 19,no one expected Libyan strongman Muammar Gaddafi ]to d...Libya’s rebels face major challenges of unity when their many factions negotiate for power WHEN NATO jet fighters dropped the first bomb over Tripoli on March 19,no one expected Libyan strongman Muammar Gaddafi ]to doggedly resist a combined force of rebel militia and some of the world’s most advanced air munitions for more than five months.Yet the combined barrage eventually took its toll and the Gaddafi era has ended. The fluid situation in Libya changed seemingly overnight.On展开更多
Stochastic iterative learning control(ILC) is designed for solving the tracking problem of stochastic linear systems through fading channels. Consequently, the signals used in learning control algorithms are faded in ...Stochastic iterative learning control(ILC) is designed for solving the tracking problem of stochastic linear systems through fading channels. Consequently, the signals used in learning control algorithms are faded in the sense that a random variable is multiplied by the original signal. To achieve the tracking objective, a two-dimensional Kalman filtering method is used in this study to derive a learning gain matrix varying along both time and iteration axes. The learning gain matrix minimizes the trace of input error covariance. The asymptotic convergence of the generated input sequence to the desired input value is strictly proved in the mean-square sense. Both output and input fading are accounted for separately in turn, followed by a general formulation that both input and output fading coexists.Illustrative examples are provided to verify the effectiveness of the proposed schemes.展开更多
Color fading caused by a decrease in anthocyanin accumulation during the post-flowering stage significantly affects postharvest quality of chrysanthemum.However,the underlying mechanism by which anthocyanin accumulati...Color fading caused by a decrease in anthocyanin accumulation during the post-flowering stage significantly affects postharvest quality of chrysanthemum.However,the underlying mechanism by which anthocyanin accumulation decreases during the post-flowering stage still unclear,which greatly restricts design of molecular breeding in chrysanthemum.Here,a chrysanthemum SG7 R2R3 MYB transcription factor(TF),CmMYB3-like,was identified to have a function in regulating anthocyanin biosynthesis during the post-flowering stage.Quantitative real time PCR(qRT-PCR)assays showed that the expression of CmMYB3-like was gradually downregulated when anthocyanin content increased during the flowering stage and was significantly upregulated during the post-flowering stage.Genetic transformation of chrysanthemum and dual-luciferase assays in N.benthamiana leaves showed that CmMYB3-like suppressed anthocyanin accumulation by inhibiting the transcription of CmCHS and CmANS directly and that of CmF3H indirectly.However,overexpression or suppression of CmMYB3-like did not affect the biosynthesis of flavones or flavonols.Genetic transformation of chrysanthemum revealed that the overexpression of CmMYB3-like inhibited anthocyanin accumulation,but its suppression prevented the decrease in anthocyanin accumulation during the post-flowering stage.Our results revealed a crucial role of CmMYB3-like in regulating the color of petals during the post-flowering stage and provided a target gene for molecular design breeding to improve the postharvest quality of chrysanthemum.展开更多
This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state...This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.展开更多
We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adapt...We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.展开更多
Libya’s rebels struggle to remain united as factions vie for power When NATO jet fighters dropped the first bomb over Tripoli on March 19, no one expected Libyan strongman Muammar Gaddafi to doggedly resist a combine...Libya’s rebels struggle to remain united as factions vie for power When NATO jet fighters dropped the first bomb over Tripoli on March 19, no one expected Libyan strongman Muammar Gaddafi to doggedly resist a combined force of rebel militia and some of the world’s展开更多
In application,lithium-ion cells undergo expansion during cycling.The mechanical behavior and the impact of external stress on lithium-ion battery are important in vehicle application.In this work,18 Ah high power com...In application,lithium-ion cells undergo expansion during cycling.The mechanical behavior and the impact of external stress on lithium-ion battery are important in vehicle application.In this work,18 Ah high power commercial cell with Li Ni_(0.5)Co_(0.2)Mn_(0.3)O_(2)/graphite electrode were adopted.A commercial compress machine was applied to monitor the mechanical characteristics under different stage of charge(SOC),lifetime and initial external force.The dynamic and steady force was obtained and the results show that the dynamic force increases as the SOC increasing,obviously.During the lifetime with high power driving mode,different external force is shown to have a great impact on the long-term cell performance,with higher stresses result in higher capacity decay rates and faster impedance increases.A proper initial external force(900 N)provides lower impedance increasing.Postmortem analysis of the cells with2000 N initial force suggests a close correlation between electrochemistry and mechanics in which higher initial force leads to higher direct current internal resistance(DCIR)increase rate.In addition,for the cell with higher external force,deformation of the cathode and thicker solid electrolyte interface(SEI)film on the surface of anode and separator are observed.Porosity reduction and closure was also verified after cycles which is an obstacle to the lithium ion transferring.The largest cause of the observed capacity decline was the loss of active lithium through autopsy analysis.In addition,for the cell with higher external force,deformation of the cathode and thicker SEI film on the surface of anode and separator are observed.Porosity reduction and closure was also verified after cycles which is an obstacle to the lithium ion transferring.The largest cause of the observed capacity decline was the loss of active lithium through autopsy analysis.展开更多
Low Earth Orbit(LEO)satellite communications can provide global coverage in the sixth generation communication(6G)networks.To combat the strong Partial Band Interferences(PBIs)and multipath fading in LEO satellite com...Low Earth Orbit(LEO)satellite communications can provide global coverage in the sixth generation communication(6G)networks.To combat the strong Partial Band Interferences(PBIs)and multipath fading in LEO satellite communication systems,the Multicarrier Direct Sequence Code Division Multiple Access(MC-DS-CDMA)technique is a promising alternative to the traditional Single-carrier Direct Sequence Code Division Multiple Access(SC-DS-CDMA)system for its advantages of high bandwidth efficiency,superior interference rejection capability,and low complexity of parallel signal processing.However,limited studies have been conducted on the performance analysis of MC-DS-CDMA acquisition systems in the presence of a large Doppler shift,a unique characteristic of LEO satellite communications.To bridge this gap,we investigate the performance of MC-DS-CDMA systems with two-dimensional acquisition and noncoherent equal gain combining over Rician fading channel in the presence of the Doppler shift and PBIs.The performance metrics are detection probability and Mean Square Error(MSE)of the Doppler factor and delay.Specifically,we derive the closed-form expressions for the MSE and the Probability Density Function(PDF)of the acquisition decision variable and obtain the detection probability.We conduct extensive numerical experiments to verify the theoretical analysis and performance gain of MC-DSCDMA over the SC-DS-CDMA.The results show that MC-DS-CDMA with two-dimensional acquisition is more robust to multipath Rician fading than SC-DS-CDMA.Moreover,MC-DS-CDMA outperforms SC-DS-CDMA regarding the detection probability and MSE when combating the strong PBIs.展开更多
To meet the high-performance requirements of fifth-generation(5G)and sixth-generation(6G)wireless networks,in particular,ultra-reliable and low-latency communication(URLLC)is considered to be one of the most important...To meet the high-performance requirements of fifth-generation(5G)and sixth-generation(6G)wireless networks,in particular,ultra-reliable and low-latency communication(URLLC)is considered to be one of the most important communication scenarios in a wireless network.In this paper,we consider the effects of the Rician fading channel on the performance of cooperative device-to-device(D2D)communication with URLLC.For better performance,we maximize and examine the system’s minimal rate of D2D communication.Due to the interference in D2D communication,the problem of maximizing the minimum rate becomes non-convex and difficult to solve.To solve this problem,a learning-to-optimize-based algorithm is proposed to find the optimal power allocation.The conventional branch and bound(BB)algorithm are used to learn the optimal pruning policy with supervised learning.Ensemble learning is used to train the multiple classifiers.To address the imbalanced problem,we used the supervised undersampling technique.Comparisons are made with the conventional BB algorithm and the heuristic algorithm.The outcome of the simulation demonstrates a notable performance improvement in power consumption.The proposed algorithm has significantly low computational complexity and runs faster as compared to the conventional BB algorithm and a heuristic algorithm.展开更多
This is a fresh perspective on the sun that considers its huge spherical size in relation to the finite speed of light. The sun is so extended that it takes light approximately 2.32 seconds to travel from the plane of...This is a fresh perspective on the sun that considers its huge spherical size in relation to the finite speed of light. The sun is so extended that it takes light approximately 2.32 seconds to travel from the plane of the solar limb to the plane tangential to the sun at the solar disc’s center. The aforementioned information is utilized in this study to support the new viewpoints. Firstly, it is shown that the solar disc is a simultaneous view of successively emitted coaxial spherical circles. Secondly, despite the fact that the sun is gaseous, it is thought to revolve completely as a rigid body at a fixed angular speed, yet an observer on Earth sees it rotate differentially. In a simple mathematical approach, it is found that the sun’s rotational speed apparently decreases with latitude. Thirdly, a qualitative examination of how we observe simultaneous whole-surface brightness changes of the sun and sunlike stars indicates that such changes would appear to spread out radially from the center of the solar disc.展开更多
Dark mudstones and shales of the Carboniferous Jiusi Formation are widely developed in northern Guizhou and Yunnan provinces, SW China. However, the distribution, reservoir characterization, and exploration potential ...Dark mudstones and shales of the Carboniferous Jiusi Formation are widely developed in northern Guizhou and Yunnan provinces, SW China. However, the distribution, reservoir characterization, and exploration potential of organic-rich shales in this area are yet to be quantified, thus limiting the prospect of shale gas in this area. This study investigates the basic geological conditions of Jiusi shale gas, using core data, well-logs, and some other test data, obtaining the following results. The organic-rich shales are mainly composed of deltaic-to-shallow-shelf deposits, with thickness ranging from 0 to 450 m, and above 350 m around the subsidence center. The organic matter is mainly type Ⅱ kerogen with TOC content of mostly 1%–2%, indicating a moderate maturity. The argillaceous shale reservoirs are indicative of strong heterogeneity, high clay minerals content, low porosity, low permeability, high specific surface area, and relatively developed secondary porosity. The gas-log anomaly intervals obtained from the survey wells have a cumulative thickness that is apparently greater than 200 m, and a few shale intervals showing high desorbed and adsorbed gas contents. Due to complex structures in the study area, conditions responsible for shale gas occurrence and trapping are generally moderate. However, areas having wide and gentle folds with moderate depth of burial reveals relatively favorable conditions of hydrocarbon traps. In contrast with typical marine-continental transitional shales, the Jiusi shale have better geological conditions for shale gas preservation. The analysis of the geological framework and hydrocarbon potential of Carboniferous Jiusi Formation provide more insight for the exploration of Carboniferous shale gas in southern China.展开更多
The additional diversity gain provided by the relays improves the secrecy capacity of communications system significantly. The multiple hops in the relaying system is an important technique to improve this diversity g...The additional diversity gain provided by the relays improves the secrecy capacity of communications system significantly. The multiple hops in the relaying system is an important technique to improve this diversity gain. The development of an analytical mathematical model of ensuring security in multicasting through fading channels incorporating this benefit of multi-hop relaying is still an open problem. Motivated by this issue, this paper considers a secure wireless multicasting scenario employing multi-hop relaying technique over frequency selective Nakagami-m fading channel and develops an analytical mathematical model to ensure the security against multiple eavesdroppers. This mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to ensure the security in the presence of multiple eavesdroppers. Moreover, the effects of the fading parameter of multicast channel, the number of hops and eavesdropper are investigated. The results show that the security in multicasting through Nakagami-m fading channel with multi-hop relaying system is more sensitive to the number of hops and eavesdroppers. The fading of multicast channel helps to improve the secrecy multicast capacity and is not the enemy of security in multicasting.展开更多
The bit error rate (BER) performance of multi-user direct spreading bi-phase shift keying (DSBPSK) direct impulse ultra wideband (UWB) systems is analyzed and simulated based on a statistical indoor multi-path f...The bit error rate (BER) performance of multi-user direct spreading bi-phase shift keying (DSBPSK) direct impulse ultra wideband (UWB) systems is analyzed and simulated based on a statistical indoor multi-path fading channel model. The BER of the system is theoretically derived and given in closed form, which is expressed in terms of channel parameters and system parameters such as pulse width parameter, pulse repeat period, user number and pulse waveform. With this BER expression, the effect of these parameters on the system performance can be evaluated in a uniform way. Simulation results well match the theory numerical results, and prove that the multi-access interference (MAI) of DS-BPSK UWB is a normal distribution.展开更多
The received satellite signal amplitude is attenuated greatly due to the strong ionospheric scintillation for lowlatitude regions, which causes the GPS tracking loop's loss of lock, the positioning errors to increase...The received satellite signal amplitude is attenuated greatly due to the strong ionospheric scintillation for lowlatitude regions, which causes the GPS tracking loop's loss of lock, the positioning errors to increase, and navigation to be interrupted. To solve the above problems, a novel signal processing algorithm is proposed based on the GPS L1 software receiver during strong ionospheric scintillation using the multi-channel intermediate frequency(IF) data sampling system. Tens of thousands of fading events are obtained based on the signal intensity measurement. The amplitude fading characteristics in the lowlatitude region are analyzed,including fading duration, time separation between fades and the numbers of signal intensity fading events. The fading thresholds are set to be 15 and 10 dB, respectively. The main fading time is very short in- 15 dB fading threshold, which generally is less than 20 ms. The main time separation between fades is less than 2 s in a single one-hour period from the time 23: 00 to 24: 00. Therefore, it has the characteristic of a short reacquisition time for the receiver designed to reduce the probability of simultaneous loss of lock for some satellites.Subsequently, the acquisition, tracking and PVT(position,velocity and time) calculations are completed by the customdesigned software receiver. The results show that the impact analysis of ionospheric scintillation on GPS amplitude attenuation in the lowlatitude region is helpful for designing the advanced tracking algorithm and to improve the robustness and accuracy of the GPS receiver.展开更多
For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced it...For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does.展开更多
Several Doppler shift estimators, including mean logarithm envelope difference (MLED) method, auto-correlation function (ACF) method, zero crossing rate (ZCR) method and mean square phase difference (MSPD) method were...Several Doppler shift estimators, including mean logarithm envelope difference (MLED) method, auto-correlation function (ACF) method, zero crossing rate (ZCR) method and mean square phase difference (MSPD) method were discussed and compared. The estimation principle and theoretical estimation bias of these estimators under Rayleigh fading channels were analyzed; furthermore, the Cramer Rao bound (CRB) of Doppler shift estimation was deduced, and a novel modification method based on two-dimensional polynomial fitting was proposed to reduce the Doppler shift estimation bias. We verified our algorithms with the Monte Carlo computer simulation; simulation results showed better variance performance of modified methods than those of the original methods. In addition, the applicable situations of these estimators were discussed.展开更多
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN....Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.展开更多
Electrochemical behavior of layered LiNi0.5Mn0.5O2 in LiNO3 aqueous solution and its cyclic fading mechanism in electrolytes with different pH values were investigated. CV results show that LiNi0.5Mn0.5O2 has good ele...Electrochemical behavior of layered LiNi0.5Mn0.5O2 in LiNO3 aqueous solution and its cyclic fading mechanism in electrolytes with different pH values were investigated. CV results show that LiNi0.5Mn0.5O2 has good electrochemical reversible behaviors in 5 mol/L LiNO3 solution. Meanwhile, the electrode in 5 mol/L LiNO3 with pH value of 12 demonstrates the best electrochemical stability. Based on the electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, it is proposed that suppressed charge-transfer resistance is the major reason, which is probably ascribed to the more stable electrode surface and less structure change.展开更多
文摘Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.
文摘The different realistic propagation channels are faced frequently the multipath fading environments. The main goal of this system design (cognitive radio network) is to improve the efficiency of spectrum access on a non-interfering basis. This system achieves high utilization for the limited spectrum in order to fulfill needs for all users’ demands which are considered as a problem in wireless communications due to rapidly increasing in wireless applications and service. This system is exposed to attack due to the vulnerabilities existence in this system. So, the main outcome of this paper is to investigate the performance of the cooperative sensing in cognitive radio networks under malicious attacks over different channel impairments, and to illustrate the most suitable individual probability of detection in real faded channel by using Nakagami model. This paper illustrates the effectiveness of the attacks and fading on the performance of spectrum sensing process.
文摘Libya’s rebels face major challenges of unity when their many factions negotiate for power WHEN NATO jet fighters dropped the first bomb over Tripoli on March 19,no one expected Libyan strongman Muammar Gaddafi ]to doggedly resist a combined force of rebel militia and some of the world’s most advanced air munitions for more than five months.Yet the combined barrage eventually took its toll and the Gaddafi era has ended. The fluid situation in Libya changed seemingly overnight.On
基金supported by the National Natural Science Foundation of China(61673045)the Fundamental Research Funds for the Central Universities(XK1802-4)
文摘Stochastic iterative learning control(ILC) is designed for solving the tracking problem of stochastic linear systems through fading channels. Consequently, the signals used in learning control algorithms are faded in the sense that a random variable is multiplied by the original signal. To achieve the tracking objective, a two-dimensional Kalman filtering method is used in this study to derive a learning gain matrix varying along both time and iteration axes. The learning gain matrix minimizes the trace of input error covariance. The asymptotic convergence of the generated input sequence to the desired input value is strictly proved in the mean-square sense. Both output and input fading are accounted for separately in turn, followed by a general formulation that both input and output fading coexists.Illustrative examples are provided to verify the effectiveness of the proposed schemes.
基金financially supported grants from National Natural Science Foundation of China(Grant Nos.31902053,31870279,31730081)China Postdoctoral Science Foundation(Grant No.2018M642273)+3 种基金Jiangsu Planned Projects or Postdoctoral Reaearch Funds(Grant No.2019K169)the Fundamental Research Funds for the Central Uniersities(Grant No.KYQN202031)the National Key Research and Development Program of China(Grant Nos.2019YFD1001500,2020YFD1000400)the earmarked fund for Jiangsu Agricultural Industry Technology System,and a project funded by the Priority academic Program Development of Jiangsu Higher Education Institutions。
文摘Color fading caused by a decrease in anthocyanin accumulation during the post-flowering stage significantly affects postharvest quality of chrysanthemum.However,the underlying mechanism by which anthocyanin accumulation decreases during the post-flowering stage still unclear,which greatly restricts design of molecular breeding in chrysanthemum.Here,a chrysanthemum SG7 R2R3 MYB transcription factor(TF),CmMYB3-like,was identified to have a function in regulating anthocyanin biosynthesis during the post-flowering stage.Quantitative real time PCR(qRT-PCR)assays showed that the expression of CmMYB3-like was gradually downregulated when anthocyanin content increased during the flowering stage and was significantly upregulated during the post-flowering stage.Genetic transformation of chrysanthemum and dual-luciferase assays in N.benthamiana leaves showed that CmMYB3-like suppressed anthocyanin accumulation by inhibiting the transcription of CmCHS and CmANS directly and that of CmF3H indirectly.However,overexpression or suppression of CmMYB3-like did not affect the biosynthesis of flavones or flavonols.Genetic transformation of chrysanthemum revealed that the overexpression of CmMYB3-like inhibited anthocyanin accumulation,but its suppression prevented the decrease in anthocyanin accumulation during the post-flowering stage.Our results revealed a crucial role of CmMYB3-like in regulating the color of petals during the post-flowering stage and provided a target gene for molecular design breeding to improve the postharvest quality of chrysanthemum.
基金supported by the National Natural Science Foundation of China under grant 61941106。
文摘This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.
基金supported in part by the National Key R&D Project of China under Grant 2020YFA0712300National Natural Science Foundation of China under Grant NSFC-62231022,12031011supported in part by the NSF of China under Grant 62125108。
文摘We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.
文摘Libya’s rebels struggle to remain united as factions vie for power When NATO jet fighters dropped the first bomb over Tripoli on March 19, no one expected Libyan strongman Muammar Gaddafi to doggedly resist a combined force of rebel militia and some of the world’s
基金financially supported by the National Key Research&Development Program of China(2016YFB0100400)the National Natural Science Foundation of China(21875154 and 22179090)。
文摘In application,lithium-ion cells undergo expansion during cycling.The mechanical behavior and the impact of external stress on lithium-ion battery are important in vehicle application.In this work,18 Ah high power commercial cell with Li Ni_(0.5)Co_(0.2)Mn_(0.3)O_(2)/graphite electrode were adopted.A commercial compress machine was applied to monitor the mechanical characteristics under different stage of charge(SOC),lifetime and initial external force.The dynamic and steady force was obtained and the results show that the dynamic force increases as the SOC increasing,obviously.During the lifetime with high power driving mode,different external force is shown to have a great impact on the long-term cell performance,with higher stresses result in higher capacity decay rates and faster impedance increases.A proper initial external force(900 N)provides lower impedance increasing.Postmortem analysis of the cells with2000 N initial force suggests a close correlation between electrochemistry and mechanics in which higher initial force leads to higher direct current internal resistance(DCIR)increase rate.In addition,for the cell with higher external force,deformation of the cathode and thicker solid electrolyte interface(SEI)film on the surface of anode and separator are observed.Porosity reduction and closure was also verified after cycles which is an obstacle to the lithium ion transferring.The largest cause of the observed capacity decline was the loss of active lithium through autopsy analysis.In addition,for the cell with higher external force,deformation of the cathode and thicker SEI film on the surface of anode and separator are observed.Porosity reduction and closure was also verified after cycles which is an obstacle to the lithium ion transferring.The largest cause of the observed capacity decline was the loss of active lithium through autopsy analysis.
基金supported by the State Key Program of NSFC(No.U1836201)and NSFC(No.92038302).
文摘Low Earth Orbit(LEO)satellite communications can provide global coverage in the sixth generation communication(6G)networks.To combat the strong Partial Band Interferences(PBIs)and multipath fading in LEO satellite communication systems,the Multicarrier Direct Sequence Code Division Multiple Access(MC-DS-CDMA)technique is a promising alternative to the traditional Single-carrier Direct Sequence Code Division Multiple Access(SC-DS-CDMA)system for its advantages of high bandwidth efficiency,superior interference rejection capability,and low complexity of parallel signal processing.However,limited studies have been conducted on the performance analysis of MC-DS-CDMA acquisition systems in the presence of a large Doppler shift,a unique characteristic of LEO satellite communications.To bridge this gap,we investigate the performance of MC-DS-CDMA systems with two-dimensional acquisition and noncoherent equal gain combining over Rician fading channel in the presence of the Doppler shift and PBIs.The performance metrics are detection probability and Mean Square Error(MSE)of the Doppler factor and delay.Specifically,we derive the closed-form expressions for the MSE and the Probability Density Function(PDF)of the acquisition decision variable and obtain the detection probability.We conduct extensive numerical experiments to verify the theoretical analysis and performance gain of MC-DSCDMA over the SC-DS-CDMA.The results show that MC-DS-CDMA with two-dimensional acquisition is more robust to multipath Rician fading than SC-DS-CDMA.Moreover,MC-DS-CDMA outperforms SC-DS-CDMA regarding the detection probability and MSE when combating the strong PBIs.
基金supported in part by the National Natural Science Foundation of China under Grant 61771410in part by the Sichuan Science and Technology Program 2023NSFSC1373in part by Postgraduate Innovation Fund Project of SWUST 23zx7101.
文摘To meet the high-performance requirements of fifth-generation(5G)and sixth-generation(6G)wireless networks,in particular,ultra-reliable and low-latency communication(URLLC)is considered to be one of the most important communication scenarios in a wireless network.In this paper,we consider the effects of the Rician fading channel on the performance of cooperative device-to-device(D2D)communication with URLLC.For better performance,we maximize and examine the system’s minimal rate of D2D communication.Due to the interference in D2D communication,the problem of maximizing the minimum rate becomes non-convex and difficult to solve.To solve this problem,a learning-to-optimize-based algorithm is proposed to find the optimal power allocation.The conventional branch and bound(BB)algorithm are used to learn the optimal pruning policy with supervised learning.Ensemble learning is used to train the multiple classifiers.To address the imbalanced problem,we used the supervised undersampling technique.Comparisons are made with the conventional BB algorithm and the heuristic algorithm.The outcome of the simulation demonstrates a notable performance improvement in power consumption.The proposed algorithm has significantly low computational complexity and runs faster as compared to the conventional BB algorithm and a heuristic algorithm.
文摘This is a fresh perspective on the sun that considers its huge spherical size in relation to the finite speed of light. The sun is so extended that it takes light approximately 2.32 seconds to travel from the plane of the solar limb to the plane tangential to the sun at the solar disc’s center. The aforementioned information is utilized in this study to support the new viewpoints. Firstly, it is shown that the solar disc is a simultaneous view of successively emitted coaxial spherical circles. Secondly, despite the fact that the sun is gaseous, it is thought to revolve completely as a rigid body at a fixed angular speed, yet an observer on Earth sees it rotate differentially. In a simple mathematical approach, it is found that the sun’s rotational speed apparently decreases with latitude. Thirdly, a qualitative examination of how we observe simultaneous whole-surface brightness changes of the sun and sunlike stars indicates that such changes would appear to spread out radially from the center of the solar disc.
基金supported by National Science and Technology Major Project entitled Test and Application Promotion of Shale Gas Exploration and Evaluation Techniques(No.2016ZX05034)a project organized by the China Geological Survey entitled Shale Gas Geological Survey in Northeastern Yunnan(No.DD20190080).
文摘Dark mudstones and shales of the Carboniferous Jiusi Formation are widely developed in northern Guizhou and Yunnan provinces, SW China. However, the distribution, reservoir characterization, and exploration potential of organic-rich shales in this area are yet to be quantified, thus limiting the prospect of shale gas in this area. This study investigates the basic geological conditions of Jiusi shale gas, using core data, well-logs, and some other test data, obtaining the following results. The organic-rich shales are mainly composed of deltaic-to-shallow-shelf deposits, with thickness ranging from 0 to 450 m, and above 350 m around the subsidence center. The organic matter is mainly type Ⅱ kerogen with TOC content of mostly 1%–2%, indicating a moderate maturity. The argillaceous shale reservoirs are indicative of strong heterogeneity, high clay minerals content, low porosity, low permeability, high specific surface area, and relatively developed secondary porosity. The gas-log anomaly intervals obtained from the survey wells have a cumulative thickness that is apparently greater than 200 m, and a few shale intervals showing high desorbed and adsorbed gas contents. Due to complex structures in the study area, conditions responsible for shale gas occurrence and trapping are generally moderate. However, areas having wide and gentle folds with moderate depth of burial reveals relatively favorable conditions of hydrocarbon traps. In contrast with typical marine-continental transitional shales, the Jiusi shale have better geological conditions for shale gas preservation. The analysis of the geological framework and hydrocarbon potential of Carboniferous Jiusi Formation provide more insight for the exploration of Carboniferous shale gas in southern China.
文摘The additional diversity gain provided by the relays improves the secrecy capacity of communications system significantly. The multiple hops in the relaying system is an important technique to improve this diversity gain. The development of an analytical mathematical model of ensuring security in multicasting through fading channels incorporating this benefit of multi-hop relaying is still an open problem. Motivated by this issue, this paper considers a secure wireless multicasting scenario employing multi-hop relaying technique over frequency selective Nakagami-m fading channel and develops an analytical mathematical model to ensure the security against multiple eavesdroppers. This mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to ensure the security in the presence of multiple eavesdroppers. Moreover, the effects of the fading parameter of multicast channel, the number of hops and eavesdropper are investigated. The results show that the security in multicasting through Nakagami-m fading channel with multi-hop relaying system is more sensitive to the number of hops and eavesdroppers. The fading of multicast channel helps to improve the secrecy multicast capacity and is not the enemy of security in multicasting.
基金The National High Technology Research and Deve-lopment Program of China (863Program) (Nos.2001AA123042,2003AA123330,2005AA123320).
文摘The bit error rate (BER) performance of multi-user direct spreading bi-phase shift keying (DSBPSK) direct impulse ultra wideband (UWB) systems is analyzed and simulated based on a statistical indoor multi-path fading channel model. The BER of the system is theoretically derived and given in closed form, which is expressed in terms of channel parameters and system parameters such as pulse width parameter, pulse repeat period, user number and pulse waveform. With this BER expression, the effect of these parameters on the system performance can be evaluated in a uniform way. Simulation results well match the theory numerical results, and prove that the multi-access interference (MAI) of DS-BPSK UWB is a normal distribution.
基金The National Natural Science Foundation for Young Scholars(No.51405203)Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-Aged Teachers and Presidentsthe Natural Science Foundation of Jiangsu Province(No.BK20160699)
文摘The received satellite signal amplitude is attenuated greatly due to the strong ionospheric scintillation for lowlatitude regions, which causes the GPS tracking loop's loss of lock, the positioning errors to increase, and navigation to be interrupted. To solve the above problems, a novel signal processing algorithm is proposed based on the GPS L1 software receiver during strong ionospheric scintillation using the multi-channel intermediate frequency(IF) data sampling system. Tens of thousands of fading events are obtained based on the signal intensity measurement. The amplitude fading characteristics in the lowlatitude region are analyzed,including fading duration, time separation between fades and the numbers of signal intensity fading events. The fading thresholds are set to be 15 and 10 dB, respectively. The main fading time is very short in- 15 dB fading threshold, which generally is less than 20 ms. The main time separation between fades is less than 2 s in a single one-hour period from the time 23: 00 to 24: 00. Therefore, it has the characteristic of a short reacquisition time for the receiver designed to reduce the probability of simultaneous loss of lock for some satellites.Subsequently, the acquisition, tracking and PVT(position,velocity and time) calculations are completed by the customdesigned software receiver. The results show that the impact analysis of ionospheric scintillation on GPS amplitude attenuation in the lowlatitude region is helpful for designing the advanced tracking algorithm and to improve the robustness and accuracy of the GPS receiver.
文摘For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does.
文摘Several Doppler shift estimators, including mean logarithm envelope difference (MLED) method, auto-correlation function (ACF) method, zero crossing rate (ZCR) method and mean square phase difference (MSPD) method were discussed and compared. The estimation principle and theoretical estimation bias of these estimators under Rayleigh fading channels were analyzed; furthermore, the Cramer Rao bound (CRB) of Doppler shift estimation was deduced, and a novel modification method based on two-dimensional polynomial fitting was proposed to reduce the Doppler shift estimation bias. We verified our algorithms with the Monte Carlo computer simulation; simulation results showed better variance performance of modified methods than those of the original methods. In addition, the applicable situations of these estimators were discussed.
基金The National Natural Science Foundation of China(No.50479017).
文摘Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.
基金Project(21301193)supported by the National Nature Science Foundation of ChinaProject(2013M530356)supported by the China Postdoctoral Science Foundation Funded+1 种基金Project(CUSZC201303)supported by the Scientific Research Foundation of Central South Universitythe Open-End Found for Valuable and Precision Instruments of Central South University
文摘Electrochemical behavior of layered LiNi0.5Mn0.5O2 in LiNO3 aqueous solution and its cyclic fading mechanism in electrolytes with different pH values were investigated. CV results show that LiNi0.5Mn0.5O2 has good electrochemical reversible behaviors in 5 mol/L LiNO3 solution. Meanwhile, the electrode in 5 mol/L LiNO3 with pH value of 12 demonstrates the best electrochemical stability. Based on the electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, it is proposed that suppressed charge-transfer resistance is the major reason, which is probably ascribed to the more stable electrode surface and less structure change.