In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering di...In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents.The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC.The following conclusions were drawn.Under the influence of lateral compressive stress,the biaxial compression-compression failure mode gradually developed from a columnar pattern to a flaky pattern,suggesting that the incorporation of rubber and polypropylene fibres into the concrete resulted in a significant change in the development of cracks.For different rubber replacement rates and polypropylene fibre contents,the vertical compressive stress exhibited the same developing trend under the influence of lateral compressive stress.Specifically,the lateral compressive stress imposed the minimum effect on the vertical compressive stress when the rubber replacement rate and polypropylene fibre content were 20%and 0.4%,respectively,and imposed the maximum effect when the rubber replacement rate and polypropylene fibre content were 20%and 0%,respectively.With the increase of rubber replacement rate,the vertical peak stress was significantly reduced,which implies that an appropriate amount of polypropylene fibres can increase the vertical peak stress to a certain extent.Then,the biaxial compression-compression mechanism of RFRC was analysed from the microscopic level by using scanning electron microscope(SEM).Meanwhile,based on Kupfer’s biaxial compression-compression failure criterion and the octahedral stress space,a biaxial compression-compression failure criterion for RFRC was proposed,which was proven to have good applicability.The research results of this study provide important theoretical basis for the engineering application and development of RFRC.展开更多
Failure of irregular rock samples may provide implications in the rapid estimation of rock strength,which is imperative in rock engineering practice.In this work,analytical,experimental and numerical investigations we...Failure of irregular rock samples may provide implications in the rapid estimation of rock strength,which is imperative in rock engineering practice.In this work,analytical,experimental and numerical investigations were carried out to study the mechanical properties and failure characteristics of rock spheres under paired point loads.Analytical solutions indicted that with the increase in sample size(contact angle)and decrease in Poisson’s ratio,the uneven tensile stress in theta direction decreased.Then laboratory experiments were carried out to investigate the load characteristics and failure mode of spherical marble samples with different sizes subjected to a pair of diametral point loads.The discrete element method(DEM)was adopted to study the failure process of rock spheres.The effect of the sphere diameter on the point load contact angle was examined in terms of peak load,crushed zone distribution and energy dissipation.Experimental and numerical results showed that the samples primarily fail in tension,with crushed zones formed at both loading points.With increase in the sample size,the contact angle,crushed area and total work increase.As the specimen diameter increases from 30 mm to 50 mm,the peak load on the specimen increases from 3.6 kN to 8.8 kN,and the percentage of crushed zone(ratio of crushing zone to sample radius,d/r)increased from 0.191 to 0.262.The results of the study have implications for understanding the failure of irregular rock specimens under point loading conditions and their size effects.展开更多
In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a...In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity.展开更多
Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse dynamic loading is performed for a specified duration.The study investigates the first ply failure load,followe...Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse dynamic loading is performed for a specified duration.The study investigates the first ply failure load,followed by the detection of successive ply failures and their failure modes using various failure theories.Some of the well-established failure theories,mostly used by the researchers,are considered for the failure prediction in laminates.The finite element computational model based on higher order shear deformation displacement field is used for the failure analysis and the complete methodology is computer coded using FORTRAN.The ply-discount stiffness reduction scheme is employed to modify the material properties of the failed lamina.The failure theories used in the analysis are compared according to their ability to predict failure load,failed ply,failure mode and progression of failure.The failure analysis is performed for both the cross-ply and angle-ply laminates with all edges simply supported and clamped.The significance of fibre orientation and stacking sequence in terms of the strength of a laminate and failure progression is also highlighted.展开更多
This paper presents two kinematic failure mechanisms of threc-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure m...This paper presents two kinematic failure mechanisms of threc-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure mechanism under vertical loading comprises a plane strain Prandti-type mechanism over the central part of the longer side, and the size of the mechanism gradually reduces at the ends of the longer side and over the shorter side as the corner of rectangular footing is being approached where the direction of soil motion remains normal to each corresponding side respectively. The failure mechanism under moment loading comprises a plane strain scoop sliding mechanism over the central part of the longer side, and the radius of scoop sliding mechanism increases linearly at the ends of the longer side. On the basis of the kinematic failure mechanisms mentioned above, the vertical ultimate bearing capacity and the ultimate bearing capacity against moment or moment ultimate bearing capacity are obtained by use of upper bound limit analysis theory. At the same time, numerical analysis results, Skempton' s results and Salgado et al. 's results are compared with this upper bound solution. It shows that the presented failure mechanisms and plastic limit analysis predictions are validated. In order to investigate the behaviors of undrained clay foundation beneath the rectangular footing subjected to the combined loadings, numerical analysis is adopted by virtue of the general-purpose FEM software ABAQUS, where the clay is assumed to obey the Mohr-Coulomb yielding criterion. The failure envelope and the ultimate bearing capacity are achieved by the numerical analysis results with the varying aspect ratios from length L to breadth B of the rectangular footing. The failure mechanisms of rectangular footing which are subjected to the combined vertical loading V and horizontal loading H (Vertical loading V and moment loading M, and horizontal loading H and moment loading M respectively are observed in the finite element analysis. ) is explained by use of the upper bound plasticity limit analysis theory. Finally, the reason of eccentricity of failure envelope in H-M loading space is given in this study, which can not be explained by use of the traditional ' swipe test'.展开更多
In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,th...In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.展开更多
A computer program is developed for the nonlincar analysis of prestressedconcrete and nonprestressed concrete members subjected to combined biaxial bending andaxial load.The strength-interaction diagrams and failure s...A computer program is developed for the nonlincar analysis of prestressedconcrete and nonprestressed concrete members subjected to combined biaxial bending andaxial load.The strength-interaction diagrams and failure surface are obtained.Thestrength design formulae are proposed.展开更多
Shear failure in panel zones and plastic hinges in steel beams are the two major failure modes of connections between concrete-filled steel tubular(CFST) columns and steel beams. To investigate the behavior of this ty...Shear failure in panel zones and plastic hinges in steel beams are the two major failure modes of connections between concrete-filled steel tubular(CFST) columns and steel beams. To investigate the behavior of this type of connection in both modes,two through-diaphragm connections were tested under cyclic and monotonic loadings and the load-carrying capacity,ductility,and strength of degradation of connections were discussed. Using ABAQUS software,we developed nonlinear finite-element models(FEMs) to simulate the load-carrying capacity and failure modes of the connections under monotonic loading. The finite-element(FE) analysis and test results showed reasonable agreement for the through-diaphragm connections,which confirms the accuracy of FEMs in predicting the load-carrying capacity and failure modes of connections. Based on the validated FEM,a parametric study was then conducted to investigate the infl uence of the thicknesses of the tube and diaphragm on the load-carrying capacity and failure modes of these connections. The results indicate that the strength,stiff ness,and load-carrying capacity are infl uenced less by the thickness of the diaphragm,and more by the thickness of the steel tube. According to the FE analysis results,it can be found that the critical condition between the two failure modes is determined by the shear resistance and bending resistance.展开更多
Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were empl...Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were employed to measure the strains in transverse loading case to validate the finite element analysis which was conducted using ANSYS software.Good agreement was obtained between the two methods.It was observed that stiffening the composite shell with helical ribs decreased the average equivalent Von Mises stress on the shell.The reduction of the stress seemed to be higher in the intersection of two ribs.It was also seen that the stress reduction ratio was higher when the structure was under bending compared to torsion and axial compression.The reduction ratio was approximately 75% in pure bending in the intersection point of the ribs,while it was approximately 25% in torsion.Therefore,it is concluded that the presence of the ribs is more effective under bending.Failure analysis was done using Tsai-Wu criterion.The ribs were observed to result in maximum and minimum increase in the failure load of the structure under transverse bending and torsional loading,respectively.展开更多
The stability analysis of passive bolt-reinforced rock slopes under seismic loads is investigated within the framework of the kinematic approach of limit analysis theory.A pseudo-static method is adopted to account fo...The stability analysis of passive bolt-reinforced rock slopes under seismic loads is investigated within the framework of the kinematic approach of limit analysis theory.A pseudo-static method is adopted to account for the inertial forces induced in the rock mass by seismic events.The strength properties of the rock material are described by a modified Hoek-Brown strength criterion,whereas the passive bolts are modeled as bar-like inclusions that exhibit only resistance to tensile-compressive forces.Taking advantage of the ability to compute closed-form expressions for the support functions associated with the modified Hoek-Brown strength criterion,a rotational failure mechanism is implemented to derive rigorous lower bound estimates for the amount of reinforcement strength to prevent slope failure.The approach is then applied to investigating the effects of relevant geometry,strength and loading parameters in light of a preliminary parametric study.The accuracy of the approach is assessed by comparison of the lower bound estimates with finite element limit analysis solutions,thus emphasizing the ability of the approach to properly predict the stability conditions and to capture the essential features of deformation localization pattern.Finally,the extension of the approach to account for slipping at the interface between reinforcements and surrounding rock mass is outlined.展开更多
According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load...According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.展开更多
Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impac...Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section.展开更多
In order to achieve a better understanding of failure behavior of cruciform specimen under different biaxial loading conditions,a three-dimensional finite element model is established with solid and interface elements...In order to achieve a better understanding of failure behavior of cruciform specimen under different biaxial loading conditions,a three-dimensional finite element model is established with solid and interface elements.Maximum stress criterion,two Hashin-type criteria and the new proposed criteria are used to predict the strength of plain woven textile composites when biaxial loading ratio equals 1.Compared with experimental data,only the new proposed criteria can reach reasonable results.The applicability of the new proposed criteria is also verified by predicting the tensile and compressive strength of cruciform specimen under different biaxial loading ratios.Moreover,the introduction of interface element makes it more intuitive to recognize delamination failure.The shape of the predicted delamination failure region in the interface layer is similar to that of the failure region in neighboring entity layers,but the area of delamination failure region is a little larger.展开更多
Due to the coupling effects between stresses in different directions,the mechanical behavior of an ad-vanced composite material under multiaxial loading is extremely complex.In this study,the influence of through-thic...Due to the coupling effects between stresses in different directions,the mechanical behavior of an ad-vanced composite material under multiaxial loading is extremely complex.In this study,the influence of through-thickness compressive stress on the interlaminar shear performance of a carbon fiber-reinforced composite was experimentally investigated.Hollow cylindrical unidirectional laminate specimens were fabricated to conduct combined compression-shear tests,and the fracture morphologies of the specimens were characterized to reveal their failure behavior.The results indicate that a moderate compression load significantly enhanced the shear properties of the laminate by inhibiting crack propagation and improv-ing the friction effect.The shear strength and modulus of a laminate specimen subjected to combined stresses improved up to a maximum of 76%and 231%,respectively,over those of an equivalent specimen subjected to pure shear.However,as the applied through-thickness load approached the compressive strength of the laminate,the specimen shear capacity began to decline owing to the transition of frac-ture mechanisms.Indeed,the specimens exhibited mixed failure modes corresponding to the different stress states,which were induced by the combined effects of through-thickness compressive and shear stresses.As the applied through-thickness compressive stress increased,the dominant failure mode of the laminate specimen changed from fiber-matrix debonding to fiber shearing and then to fiber break-age,resulting in various shear performances.展开更多
基金supported by the National 12th Five Year Plan of Science and Technology Support Project(2015 BAL02b02)National Spark Plan Project(2015 GA690045),Jiangsu Province“Six Talent Peaks”Team Project(XCL-CXTD−007).
文摘In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents.The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC.The following conclusions were drawn.Under the influence of lateral compressive stress,the biaxial compression-compression failure mode gradually developed from a columnar pattern to a flaky pattern,suggesting that the incorporation of rubber and polypropylene fibres into the concrete resulted in a significant change in the development of cracks.For different rubber replacement rates and polypropylene fibre contents,the vertical compressive stress exhibited the same developing trend under the influence of lateral compressive stress.Specifically,the lateral compressive stress imposed the minimum effect on the vertical compressive stress when the rubber replacement rate and polypropylene fibre content were 20%and 0.4%,respectively,and imposed the maximum effect when the rubber replacement rate and polypropylene fibre content were 20%and 0%,respectively.With the increase of rubber replacement rate,the vertical peak stress was significantly reduced,which implies that an appropriate amount of polypropylene fibres can increase the vertical peak stress to a certain extent.Then,the biaxial compression-compression mechanism of RFRC was analysed from the microscopic level by using scanning electron microscope(SEM).Meanwhile,based on Kupfer’s biaxial compression-compression failure criterion and the octahedral stress space,a biaxial compression-compression failure criterion for RFRC was proposed,which was proven to have good applicability.The research results of this study provide important theoretical basis for the engineering application and development of RFRC.
文摘Failure of irregular rock samples may provide implications in the rapid estimation of rock strength,which is imperative in rock engineering practice.In this work,analytical,experimental and numerical investigations were carried out to study the mechanical properties and failure characteristics of rock spheres under paired point loads.Analytical solutions indicted that with the increase in sample size(contact angle)and decrease in Poisson’s ratio,the uneven tensile stress in theta direction decreased.Then laboratory experiments were carried out to investigate the load characteristics and failure mode of spherical marble samples with different sizes subjected to a pair of diametral point loads.The discrete element method(DEM)was adopted to study the failure process of rock spheres.The effect of the sphere diameter on the point load contact angle was examined in terms of peak load,crushed zone distribution and energy dissipation.Experimental and numerical results showed that the samples primarily fail in tension,with crushed zones formed at both loading points.With increase in the sample size,the contact angle,crushed area and total work increase.As the specimen diameter increases from 30 mm to 50 mm,the peak load on the specimen increases from 3.6 kN to 8.8 kN,and the percentage of crushed zone(ratio of crushing zone to sample radius,d/r)increased from 0.191 to 0.262.The results of the study have implications for understanding the failure of irregular rock specimens under point loading conditions and their size effects.
基金Post-Doctoral Innovative Projects of Shandong Province(No.200703072)the National Natural Science Foundation of China(No.50574053)
文摘In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity.
文摘Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse dynamic loading is performed for a specified duration.The study investigates the first ply failure load,followed by the detection of successive ply failures and their failure modes using various failure theories.Some of the well-established failure theories,mostly used by the researchers,are considered for the failure prediction in laminates.The finite element computational model based on higher order shear deformation displacement field is used for the failure analysis and the complete methodology is computer coded using FORTRAN.The ply-discount stiffness reduction scheme is employed to modify the material properties of the failed lamina.The failure theories used in the analysis are compared according to their ability to predict failure load,failed ply,failure mode and progression of failure.The failure analysis is performed for both the cross-ply and angle-ply laminates with all edges simply supported and clamped.The significance of fibre orientation and stacking sequence in terms of the strength of a laminate and failure progression is also highlighted.
基金This project is financially supported by the National Natural Science Foundation of China(Grant Nos.50639010,50579006 and 50179006)
文摘This paper presents two kinematic failure mechanisms of threc-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure mechanism under vertical loading comprises a plane strain Prandti-type mechanism over the central part of the longer side, and the size of the mechanism gradually reduces at the ends of the longer side and over the shorter side as the corner of rectangular footing is being approached where the direction of soil motion remains normal to each corresponding side respectively. The failure mechanism under moment loading comprises a plane strain scoop sliding mechanism over the central part of the longer side, and the radius of scoop sliding mechanism increases linearly at the ends of the longer side. On the basis of the kinematic failure mechanisms mentioned above, the vertical ultimate bearing capacity and the ultimate bearing capacity against moment or moment ultimate bearing capacity are obtained by use of upper bound limit analysis theory. At the same time, numerical analysis results, Skempton' s results and Salgado et al. 's results are compared with this upper bound solution. It shows that the presented failure mechanisms and plastic limit analysis predictions are validated. In order to investigate the behaviors of undrained clay foundation beneath the rectangular footing subjected to the combined loadings, numerical analysis is adopted by virtue of the general-purpose FEM software ABAQUS, where the clay is assumed to obey the Mohr-Coulomb yielding criterion. The failure envelope and the ultimate bearing capacity are achieved by the numerical analysis results with the varying aspect ratios from length L to breadth B of the rectangular footing. The failure mechanisms of rectangular footing which are subjected to the combined vertical loading V and horizontal loading H (Vertical loading V and moment loading M, and horizontal loading H and moment loading M respectively are observed in the finite element analysis. ) is explained by use of the upper bound plasticity limit analysis theory. Finally, the reason of eccentricity of failure envelope in H-M loading space is given in this study, which can not be explained by use of the traditional ' swipe test'.
基金Youth Talent Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKZ0270)Youth Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKQZ2021055).
文摘In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.
文摘A computer program is developed for the nonlincar analysis of prestressedconcrete and nonprestressed concrete members subjected to combined biaxial bending andaxial load.The strength-interaction diagrams and failure surface are obtained.Thestrength design formulae are proposed.
基金supported by the National Natural Science Foundation of China (Nos. 51268054 and 51468061)the Natural Science Foundation of Tianjin, China (No. 13JCQNJC07300)
文摘Shear failure in panel zones and plastic hinges in steel beams are the two major failure modes of connections between concrete-filled steel tubular(CFST) columns and steel beams. To investigate the behavior of this type of connection in both modes,two through-diaphragm connections were tested under cyclic and monotonic loadings and the load-carrying capacity,ductility,and strength of degradation of connections were discussed. Using ABAQUS software,we developed nonlinear finite-element models(FEMs) to simulate the load-carrying capacity and failure modes of the connections under monotonic loading. The finite-element(FE) analysis and test results showed reasonable agreement for the through-diaphragm connections,which confirms the accuracy of FEMs in predicting the load-carrying capacity and failure modes of connections. Based on the validated FEM,a parametric study was then conducted to investigate the infl uence of the thicknesses of the tube and diaphragm on the load-carrying capacity and failure modes of these connections. The results indicate that the strength,stiff ness,and load-carrying capacity are infl uenced less by the thickness of the diaphragm,and more by the thickness of the steel tube. According to the FE analysis results,it can be found that the critical condition between the two failure modes is determined by the shear resistance and bending resistance.
文摘Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were employed to measure the strains in transverse loading case to validate the finite element analysis which was conducted using ANSYS software.Good agreement was obtained between the two methods.It was observed that stiffening the composite shell with helical ribs decreased the average equivalent Von Mises stress on the shell.The reduction of the stress seemed to be higher in the intersection of two ribs.It was also seen that the stress reduction ratio was higher when the structure was under bending compared to torsion and axial compression.The reduction ratio was approximately 75% in pure bending in the intersection point of the ribs,while it was approximately 25% in torsion.Therefore,it is concluded that the presence of the ribs is more effective under bending.Failure analysis was done using Tsai-Wu criterion.The ribs were observed to result in maximum and minimum increase in the failure load of the structure under transverse bending and torsional loading,respectively.
基金financial support from Ecole des Ponts et Chaussées-ParisTech(France)the French Institute of Tunisia (French Embassy-Tunisia)Laboratoire de Génie Civil (ENIT) through project SSHN2015-ENPC/ENIT
文摘The stability analysis of passive bolt-reinforced rock slopes under seismic loads is investigated within the framework of the kinematic approach of limit analysis theory.A pseudo-static method is adopted to account for the inertial forces induced in the rock mass by seismic events.The strength properties of the rock material are described by a modified Hoek-Brown strength criterion,whereas the passive bolts are modeled as bar-like inclusions that exhibit only resistance to tensile-compressive forces.Taking advantage of the ability to compute closed-form expressions for the support functions associated with the modified Hoek-Brown strength criterion,a rotational failure mechanism is implemented to derive rigorous lower bound estimates for the amount of reinforcement strength to prevent slope failure.The approach is then applied to investigating the effects of relevant geometry,strength and loading parameters in light of a preliminary parametric study.The accuracy of the approach is assessed by comparison of the lower bound estimates with finite element limit analysis solutions,thus emphasizing the ability of the approach to properly predict the stability conditions and to capture the essential features of deformation localization pattern.Finally,the extension of the approach to account for slipping at the interface between reinforcements and surrounding rock mass is outlined.
基金financially supported by the State Key Development Program for Basic Research of China(973 Program,Grant No.2013CB036204)
文摘According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.
文摘Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section.
基金supported by the National Natural Science Foundation of China(No.51205190)the Jiangsu Province Key Laboratory of Aerospace Power System(No.NJ20140019)
文摘In order to achieve a better understanding of failure behavior of cruciform specimen under different biaxial loading conditions,a three-dimensional finite element model is established with solid and interface elements.Maximum stress criterion,two Hashin-type criteria and the new proposed criteria are used to predict the strength of plain woven textile composites when biaxial loading ratio equals 1.Compared with experimental data,only the new proposed criteria can reach reasonable results.The applicability of the new proposed criteria is also verified by predicting the tensile and compressive strength of cruciform specimen under different biaxial loading ratios.Moreover,the introduction of interface element makes it more intuitive to recognize delamination failure.The shape of the predicted delamination failure region in the interface layer is similar to that of the failure region in neighboring entity layers,but the area of delamination failure region is a little larger.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFF0500100)the National Natural Science Foundation of China(Grant No.12272358)the Fund support of Science and Technology on Transient Impact Laboratory.
文摘Due to the coupling effects between stresses in different directions,the mechanical behavior of an ad-vanced composite material under multiaxial loading is extremely complex.In this study,the influence of through-thickness compressive stress on the interlaminar shear performance of a carbon fiber-reinforced composite was experimentally investigated.Hollow cylindrical unidirectional laminate specimens were fabricated to conduct combined compression-shear tests,and the fracture morphologies of the specimens were characterized to reveal their failure behavior.The results indicate that a moderate compression load significantly enhanced the shear properties of the laminate by inhibiting crack propagation and improv-ing the friction effect.The shear strength and modulus of a laminate specimen subjected to combined stresses improved up to a maximum of 76%and 231%,respectively,over those of an equivalent specimen subjected to pure shear.However,as the applied through-thickness load approached the compressive strength of the laminate,the specimen shear capacity began to decline owing to the transition of frac-ture mechanisms.Indeed,the specimens exhibited mixed failure modes corresponding to the different stress states,which were induced by the combined effects of through-thickness compressive and shear stresses.As the applied through-thickness compressive stress increased,the dominant failure mode of the laminate specimen changed from fiber-matrix debonding to fiber shearing and then to fiber break-age,resulting in various shear performances.