期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Tensile Mechanical Behavior and Failure Mechanism of a Plain-Woven SiCf/SiC Composites at Room and Elevated Temperatures
1
作者 Jianze He Xuefeng Teng +3 位作者 Xiao’an Hu Xiao Luo Qi Zeng Xueqiang Cao 《Journal of Materials Science and Chemical Engineering》 2024年第4期67-83,共17页
Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. I... Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso-architecture and inhere defects. In this paper, the in-plane tensile mechanical behavior of a plain-woven SiCf/SiC composite at room and elevated temperatures was investigated, and the factors affecting the tensile strength of the material were discussed in depth. The results show that the tensile modulus and strength of SiCf/SiC composites at high temperature are lower, but the fracture strain increases and the toughness of the composites is enhanced;the stitching holes significantly weaken the tensile strength of the material, resulting in the material is easy to break at the cross-section with stitching holes. 展开更多
关键词 Plain-Woven SiCf/SiC Composites damage and failure Analysis Stitching Hole
下载PDF
Study on the critical stress threshold of weakly cemented sandstone damage based on the renormalization group method
2
作者 Zhaoyang Song Hongguang Ji +1 位作者 Zhiqiang Liu Lihui Sun 《International Journal of Coal Science & Technology》 EI CAS 2020年第4期693-703,共11页
During the microstructural analysis of weakly cemented sandstone,the granule components and ductile structural parts of the sandstone are typically generalized.Considering the contact between granules in the microstru... During the microstructural analysis of weakly cemented sandstone,the granule components and ductile structural parts of the sandstone are typically generalized.Considering the contact between granules in the microstructure of weakly cemented sandstone,three basic units can be determined:regular tetrahedra,regular hexahedra,and regular octahedra.Renormalization group models with granule-and pore-centered weakly cemented sandstone were established,and,according to the renormalization group transformation rule,the critical stress threshold of damage was calculated.The results show that the renormalization model using regular octahedra as the basic units has the highest critical stress threshold.The threshold obtained by iterative calculations of the granule-centered model is smaller than that obtained by the pore-centered model.The granule-centered calculation provides the lower limit(18.12%),and the pore-centered model provides the upper limit(36.36%).Within this range,the weakly cemented sandstone is in a phase-like critical state.That is,the state of granule aggregation transforms from continuous to discrete.In the relative stress range of 18.12%-36.36%,the weakly cemented sandstone exhibits an increased proportion of high-frequency signals(by 83.3%)and a decreased proportion of low-frequency signals(by 23.6%).The renormalization calculation results for weakly cemented sandstone explain the high-low frequency conversion of acoustic emission signals during loading.The research reported in this paper has important significance for elucidating the damage mechanism of weakly cemented sandstone. 展开更多
关键词 Weakly cemented sandstone Renormalization group method damage and failure THRESHOLD
下载PDF
Comparative Study of Energy Absorption Capability of Flat Plate Coupons Made by CFRP Plain Weave Fabric Composites
3
作者 Redouane Lombarkia Augustin Gakwaya +6 位作者 Denis Nandlall Marie-Laure Dano Julie Lé vesque Ameur BenKhelifa Philippe Vachon-Joannette Philippe Gagnon 《World Journal of Mechanics》 2021年第7期121-145,共25页
Despite years of governmental and academic institutions’ researches, no experimental standards are established for evaluating crush Specific Energy Absorption SEA for plain weave fabric woven carbon-fiber-reinforced ... Despite years of governmental and academic institutions’ researches, no experimental standards are established for evaluating crush Specific Energy Absorption SEA for plain weave fabric woven carbon-fiber-reinforced composites used in modern aircraft structures as elements of the boxes to mitigate damage during crush events. At the laboratory scale, this paper proposes a comparative study of energy absorption capability of flat plate coupons made by CFRP plain weave fabric composites. A new fixture design and setup were created with hydraulic pressure and drop tower machines to carry out tests of flat plate composite specimens under quasi-static and low velocity on-axis crash loading. For investigating parameters sensibility of triggers and layups, numerical and experimental results of four trigger types and three stacking sequences were compared. A confrontation between experimental and pre-developed UL-Crush numerical material model results confirms that coupons with 0˚ oriented central plies and saw teeth or corrugated triggers dissipates higher energy during crush, compared to coupons with 90˚ or 45˚ oriented central plies and chamfer 45˚ or steeple triggers. An efficient and simplified experimental methodology was developed to measure and investigate different parameters influencing SEA of composites under crush load. Comparison between experimental and UL-Crush material model confirms the performance of such simulation tool. 展开更多
关键词 Crush Behavior TRIGGERS damage and failure Mechanisms CRASHWORTHINESS SEA
下载PDF
Further numerical investigation on concrete dynamic behaviors with considering stress non-equilibrium in SHPB test based on the waveform features 被引量:1
4
作者 T.H.Lv X.W.Chen +1 位作者 Y.J.Deng G.Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第4期873-886,共14页
In this study,with the meso-scale model reliably validated in our previous work(Construction and Building Materials,2018),the waveform features of plain concrete under various loading conditions and especially with co... In this study,with the meso-scale model reliably validated in our previous work(Construction and Building Materials,2018),the waveform features of plain concrete under various loading conditions and especially with considering stress non-equilibrium are reliably reproduced and predicted.Associating with waveform features,the violation indicator of the specimen stress equilibrium in the split Hopkinson pressure bar test is identified for concrete-like damage softening materi-als.The concrete material behaviors for stress non-equilibrium are further analyzed,e.g.the dynamic increase factor(DIF)and damage development,etc.The conception of“damage failure volume”is introduced,and a new method of defining the development of concrete dynamic damage is given in the nimierical study.What’s more,the“compression wave”and“double peak”phenomena observed in the experiment are further interpreted based on the means of numerical simulation.Waveform features how to reflect the concrete material properties is also concluded.The results show that,the disappearance of the“double peak” phenomenon of reflection curve under high strain rate can be regarded as the indicator of the violation of stress equilibrium.After the violation of the stress equilibrium,the relevant DIFs of the concrete specimen will not change significantly.Especially,the concrete specimen will turn into structural response from material response.The conception of“damage failure volume”can well explain the generation of the“double peak”phenomenon of the reflection curve.The “compression wave” phenomenon of reflection curve under lower strain rates is derived from the unloading expansion recovery of the concrete specimen.Furthermore,under the same loading condition,the amplitude of the first peak of the reflection curve can be used as the evaluation standard of the bonding quality between mortar and aggregates. 展开更多
关键词 Concrete material Split Hopkinson pressure bar test Numerical investigation Waveform feature Stress non-equilibrium damage failure volume
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部