期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Finite element analysis of stress and strain distributions in mortise and loose tenon furniture joints 被引量:6
1
作者 Mohammad Derikvand Ghanbar Ebrahimi 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第3期677-681,共5页
We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&amp;LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose ... We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&amp;LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M&amp;LT joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon sur-faces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corre-sponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints. 展开更多
关键词 bending moment capacity failure mode finite element furniture mortise and loose tenon joint stress and strain distributions
下载PDF
Experimental and finite element analysis for fracture of coating layer of galvannealed steel sheet 被引量:2
2
作者 S.I.KIM J.U.HER +1 位作者 Y.C.JANG Y.LEE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期111-116,共6页
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t... Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well. 展开更多
关键词 galvannealed steel sheet fracture simulation coating layer finite element analysis failure model
下载PDF
Influence of intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening 被引量:5
3
作者 张社荣 孙博 +1 位作者 王超 严磊 《Journal of Central South University》 SCIE EI CAS 2014年第4期1571-1582,共12页
Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out tru... Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out true triaxial tests on siltstone specimen. It is shown that peak strength of siltstone specimen increases firstly and subsequently decreases with the increase of the intermediate principal stress. And its turning point is related to the minimum principal stress and the direction of the intermediate principal stress. Failure characteristic(brittleness or ductility) of siltstone is determined by the minimum principal stress and the difference between the intermediate and minimum principal stress. The intermediate principal stress has a significant effect on the types and distributions of microcracks. The failure modes of the specimen are determined by the magnitude and direction of the intermediate principal stress, and related to weakening effect of the opening and inhibition effect of confining pressure in essence: when weakening effect of the opening is greater than inhibition effect of confining pressure, the failure surface is parallel to the x axis(such as σ2=σ3=0 MPa); conversely, the failure surface is parallel to the z axis(such as σ2=20 MPa, σ3=0 MPa). 展开更多
关键词 rock mechanics intermediate principal stress hard rock with pre-existing circular opening failure mechanism discrete element
下载PDF
Geotechnical investigations and remediation design for failure of tunnel portal section: a case study in northern Turkey 被引量:7
4
作者 Ayberk KAYA Kadir KARAMAN Fikri BULUT 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1140-1160,共21页
Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and ant... Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses. 展开更多
关键词 Portal failure Stability analysis Finite element method Tunnel support design Remedial measures Rock Mass Rating(RMR) Rock Mass Quality(Q) New Austrian Tunneling Method(NATM)
下载PDF
Three-dimensional FDEM numerical simulation of failure processes observed in Opalinus Clay laboratory samples 被引量:10
5
作者 Omid Mahabadi Patrick Kaifosh +1 位作者 Paul Marschall Tim Vietor 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期591-606,共16页
This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) ... This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibratedagainst standard laboratory experiments, including Brazilian disc test and uniaxial compression test. Theeffect of increasing confining pressure on the mechanical response and fracture propagation of the rockwas quantified under triaxial compression tests. Polyaxial (or true triaxial) simulations highlighted theeffect of the intermediate principal stress (s2) on fracture directions in the model: as the intermediateprincipal stress increased, fractures tended to align in the direction parallel to the plane defined by themajor and intermediate principal stresses. The peak strength was also shown to vary with changing s2. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Three-dimensional(3D) hybrid finitediscrete element method(FDEM) Intermediate principal stress Discrete element methods True triaxial behaviour failure envelope
下载PDF
Numerical evaluation of strength and deformability of fractured rocks 被引量:9
6
作者 Majid Noorian Bidgoli Zhihong Zhao Lanru Jing 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第6期419-430,共12页
Knowledge of the strength and deformability of fractured rocks is important for design, construction and stability evaluation of slopes, foundations and underground excavations in civil and mining engineering. However... Knowledge of the strength and deformability of fractured rocks is important for design, construction and stability evaluation of slopes, foundations and underground excavations in civil and mining engineering. However, laboratory tests of intact rock samples cannot provide information about the strength and deformation behaviors of fractured rock masses that include many fractures of varying sizes, orientations and locations. On the other hand, large-scale in situ tests of fractured rock masses are economically costly and often not practical in reality at present. Therefore, numerical modeling becomes necessary. Numerical predicting using discrete element methods(DEM) is a suitable approach for such modeling because of their advantages of explicit representations of both fractures system geometry and their constitutive behaviors of fractures, besides that of intact rock matrix. In this study, to generically determine the compressive strength of fractured rock masses, a series of numerical experiments were performed on two-dimensional discrete fracture network models based on the realistic geometrical and mechanical data of fracture systems from feld mapping. We used the UDEC code and a numerical servo-controlled program for controlling the progressive compressive loading process to avoid sudden violent failure of the models. The two loading conditions applied are similar to the standard laboratory testing for intact rock samples in order to check possible differences caused by such loading conditions. Numerical results show that the strength of fractured rocks increases with the increasing confning pressure, and that deformation behavior of fractured rocks follows elasto-plastic model with a trend of strain hardening. The stresses and strains obtained from these numerical experiments were used to ft the well-known Mohr-Coulomb(MC) and Hoek-Brown(H-B) failure criteria, represented by equivalent material properties defning these two criteria. The results show that both criteria can provide fair estimates of the compressive strengths for all tested numerical models. Parameters of the elastic deformability of fractured models during elastic deformation stages were also evaluated, and represented as equivalent Young’s modulus and Poisson’s ratio as functions of lateral confning pressure. It is the frst time that such systematic numerical predicting for strength of fractured rocks was performed considering different loading conditions, with important fndings for different behaviors of fractured rock masses, compared with testing intact rock samples under similar loading conditions. 展开更多
关键词 Strength Deformability Fractured rocks Discrete element methods(DEM) failure criteria
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部