期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Treatment effect investigation of underground continuous impervious curtain application in water-rich strata 被引量:10
1
作者 Tao Xiangling Ma Jinrong Zeng Wei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第6期975-981,共7页
Serious shaft lining failures often occur when shaft linings are constructed by passing them through the deep topsoil of Quaternary strata. This approach also leads to the formation of an aquifer at the bottom.Based o... Serious shaft lining failures often occur when shaft linings are constructed by passing them through the deep topsoil of Quaternary strata. This approach also leads to the formation of an aquifer at the bottom.Based on the theory of the additional stress which is the main reason for these failures, this study focuses on the treatment effect of underground continuous impervious curtain(UCIC) in terms of different factors, namely, the location, shape, range, and width, by using numerical simulation. Results show that the UCIC can reduce the stress concentration in the shaft lining formed in the bottom aquifer. The UCIC can also reinforce the shaft lining at different angles and can be applied in actual situations. The strength factors of the inner surface of the shaft lining increase after the UCIC are used. The material strength and width of the UCIC show an obvious effect on the stability of the shaft lining. Results proved that the UCIC could effectively strengthen the stability of the shaft lining when it was built in the aquifer or built in the aquifer and above and below the layer. 展开更多
关键词 UCICShaft lining failurewater drainageUnderground wall
下载PDF
Overburden failure and the prevention of water and sand inrush during coal mining under thin bedrock 被引量:7
2
作者 Yang Weifeng Xia Xiaohong Zhao Guorong Ji Yubin Shen Dingyi 《Mining Science and Technology》 EI CAS 2011年第5期733-736,共4页
Coal mining under thin bedrock or thick unconsolidated soil layers brings mining problems related to these special geological conditions. The meaning of the term ''thin bedrock'' is defined through the... Coal mining under thin bedrock or thick unconsolidated soil layers brings mining problems related to these special geological conditions. The meaning of the term ''thin bedrock'' is defined through the thick- ness statistics of the coal seam and the bedrock layer. The coal-bearing strata having thick, unconsoli- dated aquifers and thin bedrock located at the Taiping Coal Mine in Shandong province were taken as a geological prototype for subsequent study. The geological, hydro-geological and engineering character- istics of the thin bedrock were analyzed. An engineering geological model was than established. Overbur- den failure and the development of ''Three Zones'' were studied by physical model tests. The rupture pattern and rock failure were analyzed for mining conditions under thin bedrock. The height of the caving zone and the freely flowing water fractured zone of different mining thicknesses were separately calcu- lated. The results show that a mining thickness greater than 3.5 m causes the height of the freely flowing water fractured zone to be sufficient to touch the weathered zone and the bottom of the Quaternary sys- tem aquifer, to various degrees. This, then, would lead to water and sand inrush into the working face. Measures to prevent water and sand flow inrush disasters by eliminating the power source are put fore- word. A field dewatering scheme was designed and observational data were obtained. The dewatering project had an obvious effect and the water level at working face number 8309 dropped to a safe level. The average draw down of the groundwater was observed to be 7.86 m. This showed that the dewatering project played a role in decreasing the hydraulic pressure and ensuring safety mining. 展开更多
关键词 Thin bedrockMining failurewater and sand flow inrushDewatering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部