In this paper,a novel fairness-aware harvested energy efficiency-based green transmission scheme for wireless information and power transfer(SWIPT)aided sensor networks is developed for active beamforming of multiante...In this paper,a novel fairness-aware harvested energy efficiency-based green transmission scheme for wireless information and power transfer(SWIPT)aided sensor networks is developed for active beamforming of multiantenna transmitter and passive beamforming at intelligent reflecting surfaces(IRS).By optimizing the active beamformer assignment at the transmitter in conjunction with the passive beamformer assignment at the IRS,we aimtomaximize the minimumharvested energy efficiency among all the energy receivers(ER)where information receivers(IR)are bound to the signal-interference-noise-ratio(SINR)and the maximum transmitted power of the transmitter.To handle the non-convex problem,both semi-definite relaxation(SDR)and block coordinate descent technologies are exploited.Then,the original problem is transformed into two convex sub-problems which can be solved via semidefinite programming.Numerical simulation results demonstrate that the IRS and energy beamformer settings in this paper provide greater system gain than the traditional experimental setting,thereby improving the fairness-aware harvested energy efficiency of the ER.展开更多
基金This work was supported in part by the Priority Academic Program Development of Jiangsu Higher Education,the National Natural Science Foundation of China under Grant No.62171119the Key Research and Development Plan ofXuzhou underGrant Nos.KC20027,KC18079+1 种基金in part by the Joint Research Fund for Guangzhou University and Hong Kong University of Science and Technology under Grant No.YH202203the Guangzhou Basic Research Program Municipal School(College)Joint Funding Project.
文摘In this paper,a novel fairness-aware harvested energy efficiency-based green transmission scheme for wireless information and power transfer(SWIPT)aided sensor networks is developed for active beamforming of multiantenna transmitter and passive beamforming at intelligent reflecting surfaces(IRS).By optimizing the active beamformer assignment at the transmitter in conjunction with the passive beamformer assignment at the IRS,we aimtomaximize the minimumharvested energy efficiency among all the energy receivers(ER)where information receivers(IR)are bound to the signal-interference-noise-ratio(SINR)and the maximum transmitted power of the transmitter.To handle the non-convex problem,both semi-definite relaxation(SDR)and block coordinate descent technologies are exploited.Then,the original problem is transformed into two convex sub-problems which can be solved via semidefinite programming.Numerical simulation results demonstrate that the IRS and energy beamformer settings in this paper provide greater system gain than the traditional experimental setting,thereby improving the fairness-aware harvested energy efficiency of the ER.