As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocrea...As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news.展开更多
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in...The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.展开更多
Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,...Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics.展开更多
With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature t...With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature to identify fake news,but these methods have limitations when dealing with news in specific domains.In order to solve the problem of weak feature correlation between data from different domains,a model for detecting fake news by integrating domain-specific emotional and semantic features is proposed.This method makes full use of the attention mechanism,grasps the correlation between different features,and effectively improves the effect of feature fusion.The algorithm first extracts the semantic features of news text through the Bi-LSTM(Bidirectional Long Short-Term Memory)layer to capture the contextual relevance of news text.Senta-BiLSTM is then used to extract emotional features and predict the probability of positive and negative emotions in the text.It then uses domain features as an enhancement feature and attention mechanism to fully capture more fine-grained emotional features associated with that domain.Finally,the fusion features are taken as the input of the fake news detection classifier,combined with the multi-task representation of information,and the MLP and Softmax functions are used for classification.The experimental results show that on the Chinese dataset Weibo21,the F1 value of this model is 0.958,4.9% higher than that of the sub-optimal model;on the English dataset FakeNewsNet,the F1 value of the detection result of this model is 0.845,1.8% higher than that of the sub-optimal model,which is advanced and feasible.展开更多
In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure in...In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics.展开更多
Social media has become increasingly significant in modern society,but it has also turned into a breeding ground for the propagation of misleading information,potentially causing a detrimental impact on public opinion...Social media has become increasingly significant in modern society,but it has also turned into a breeding ground for the propagation of misleading information,potentially causing a detrimental impact on public opinion and daily life.Compared to pure text content,multmodal content significantly increases the visibility and share ability of posts.This has made the search for efficient modality representations and cross-modal information interaction methods a key focus in the field of multimodal fake news detection.To effectively address the critical challenge of accurately detecting fake news on social media,this paper proposes a fake news detection model based on crossmodal message aggregation and a gated fusion network(MAGF).MAGF first uses BERT to extract cumulative textual feature representations and word-level features,applies Faster Region-based ConvolutionalNeuralNetwork(Faster R-CNN)to obtain image objects,and leverages ResNet-50 and Visual Geometry Group-19(VGG-19)to obtain image region features and global features.The image region features and word-level text features are then projected into a low-dimensional space to calculate a text-image affinity matrix for cross-modal message aggregation.The gated fusion network combines text and image region features to obtain adaptively aggregated features.The interaction matrix is derived through an attention mechanism and further integrated with global image features using a co-attention mechanism to producemultimodal representations.Finally,these fused features are fed into a classifier for news categorization.Experiments were conducted on two public datasets,Twitter and Weibo.Results show that the proposed model achieves accuracy rates of 91.8%and 88.7%on the two datasets,respectively,significantly outperforming traditional unimodal and existing multimodal models.展开更多
Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the rea...Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the real one. Recently, many researchers have focused on understanding how deepkakes work and detecting using deep learning approaches. This paper introduces an explainable deepfake framework for images creation and classification. The framework consists of three main parts: the first approach is called Instant ID which is used to create deepfacke images from the original one;the second approach called Xception classifies the real and deepfake images;the third approach called Local Interpretable Model (LIME) provides a method for interpreting the predictions of any machine learning model in a local and interpretable manner. Our study proposes deepfake approach that achieves 100% precision and 100% accuracy for deepfake creation and classification. Furthermore, the results highlight the superior performance of the proposed model in deep fake creation and classification.展开更多
China is a place where counterfeiting is not just popular,it’s a vibrant culture.From eggs made from calcium chloride and gelatin to cafés named'Sunbucks'(or worse),there are knockoff versions of almost ...China is a place where counterfeiting is not just popular,it’s a vibrant culture.From eggs made from calcium chloride and gelatin to cafés named'Sunbucks'(or worse),there are knockoff versions of almost every product imaginable.But'fake'doesn’t just refer to copycats.People can use'fake'(假jiǎ)to refer展开更多
Nowadays,the usage of socialmedia platforms is rapidly increasing,and rumours or false information are also rising,especially among Arab nations.This false information is harmful to society and individuals.Blocking an...Nowadays,the usage of socialmedia platforms is rapidly increasing,and rumours or false information are also rising,especially among Arab nations.This false information is harmful to society and individuals.Blocking and detecting the spread of fake news in Arabic becomes critical.Several artificial intelligence(AI)methods,including contemporary transformer techniques,BERT,were used to detect fake news.Thus,fake news in Arabic is identified by utilizing AI approaches.This article develops a new hunterprey optimization with hybrid deep learning-based fake news detection(HPOHDL-FND)model on the Arabic corpus.The HPOHDL-FND technique undergoes extensive data pre-processing steps to transform the input data into a useful format.Besides,the HPOHDL-FND technique utilizes long-term memory with a recurrent neural network(LSTM-RNN)model for fake news detection and classification.Finally,hunter prey optimization(HPO)algorithm is exploited for optimal modification of the hyperparameters related to the LSTM-RNN model.The performance validation of the HPOHDL-FND technique is tested using two Arabic datasets.The outcomes exemplified better performance over the other existing techniques with maximum accuracy of 96.57%and 93.53%on Covid19Fakes and satirical datasets,respectively.展开更多
In view of the various adverse effects,fake news detection has become an extremely important task.So far,many detection methods have been proposed,but these methods still have some limitations.For example,only two ind...In view of the various adverse effects,fake news detection has become an extremely important task.So far,many detection methods have been proposed,but these methods still have some limitations.For example,only two independently encoded unimodal information are concatenated together,but not integrated with multimodal information to complete the complementary information,and to obtain the correlated information in the news content.This simple fusion approach may lead to the omission of some information and bring some interference to the model.To solve the above problems,this paper proposes the FakeNewsDetectionmodel based on BLIP(FNDB).First,the XLNet and VGG-19 based feature extractors are used to extract textual and visual feature representation respectively,and BLIP based multimodal feature extractor to obtain multimodal feature representation in news content.Then,the feature fusion layer will fuse these features with the help of the cross-modal attention module to promote various modal feature representations for information complementation.The fake news detector uses these fused features to identify the input content,and finally complete fake news detection.Based on this design,FNDB can extract as much information as possible from the news content and fuse the information between multiple modalities effectively.The fake news detector in the FNDB can also learn more information to achieve better performance.The verification experiments on Weibo and Gossipcop,two widely used real-world datasets,show that FNDB is 4.4%and 0.6%higher in accuracy than the state-of-theart fake news detection methods,respectively.展开更多
In the past few years,social media and online news platforms have played an essential role in distributing news content rapidly.Consequently.verification of the authenticity of news has become a major challenge.During...In the past few years,social media and online news platforms have played an essential role in distributing news content rapidly.Consequently.verification of the authenticity of news has become a major challenge.During the COVID-19 outbreak,misinformation and fake news were major sources of confusion and insecurity among the general public.In the first quarter of the year 2020,around 800 people died due to fake news relevant to COVID-19.The major goal of this research was to discover the best learning model for achieving high accuracy and performance.A novel case study of the Fake News Classification using ELECTRA model,which achieved 85.11%accuracy score,is thus reported in this manuscript.In addition to that,a new novel dataset called COVAX-Reality containing COVID-19 vaccine-related news has been contributed.Using the COVAX-Reality dataset,the performance of FNEC is compared to several traditional learning models i.e.,Support Vector Machine(SVM),Naive Bayes(NB),Passive Aggressive Classifier(PAC),Long Short-Term Memory(LSTM),Bi-directional LSTM(Bi-LSTM)and Bi-directional Encoder Representations from Transformers(BERT).For the evaluation of FNEC,standard metrics(Precision,Recall,Accuracy,and F1-Score)were utilized.展开更多
In 2021,the abnormal short-term price fluctuations of GameStop,which were triggered by internet stock discussions,drew the attention of academics,financial analysts,and stock trading commissions alike,prompting calls ...In 2021,the abnormal short-term price fluctuations of GameStop,which were triggered by internet stock discussions,drew the attention of academics,financial analysts,and stock trading commissions alike,prompting calls to address such events and maintain market stability.However,the impact of stock discussions on volatile trading behavior has received comparatively less attention than traditional fundamentals.Furthermore,data mining methods are less often used to predict stock trading despite their higher accuracy.This study adopts an innovative approach using social media data to obtain stock rumors,and then trains three decision trees to demonstrate the impact of rumor propagation on stock trading behavior.Our findings show that rumor propagation outperforms traditional fundamentals in predicting abnormal trading behavior.The study serves as an impetus for further research using data mining as a method of inquiry.展开更多
The growth of the internet and technology has had a significant effect on social interactions.False information has become an important research topic due to the massive amount of misinformed content on social network...The growth of the internet and technology has had a significant effect on social interactions.False information has become an important research topic due to the massive amount of misinformed content on social networks.It is very easy for any user to spread misinformation through the media.Therefore,misinformation is a problem for professionals,organizers,and societies.Hence,it is essential to observe the credibility and validity of the News articles being shared on social media.The core challenge is to distinguish the difference between accurate and false information.Recent studies focus on News article content,such as News titles and descriptions,which has limited their achievements.However,there are two ordinarily agreed-upon features of misinformation:first,the title and text of an article,and second,the user engagement.In the case of the News context,we extracted different user engagements with articles,for example,tweets,i.e.,read-only,user retweets,likes,and shares.We calculate user credibility and combine it with article content with the user’s context.After combining both features,we used three Natural language processing(NLP)feature extraction techniques,i.e.,Term Frequency-Inverse Document Frequency(TF-IDF),Count-Vectorizer(CV),and Hashing-Vectorizer(HV).Then,we applied different machine learning classifiers to classify misinformation as real or fake.Therefore,we used a Support Vector Machine(SVM),Naive Byes(NB),Random Forest(RF),Decision Tree(DT),Gradient Boosting(GB),and K-Nearest Neighbors(KNN).The proposed method has been tested on a real-world dataset,i.e.,“fakenewsnet”.We refine the fakenewsnet dataset repository according to our required features.The dataset contains 23000+articles with millions of user engagements.The highest accuracy score is 93.4%.The proposed model achieves its highest accuracy using count vector features and a random forest classifier.Our discoveries confirmed that the proposed classifier would effectively classify misinformation in social networks.展开更多
The emergence of deep fake videos in recent years has made image falsification a real danger.A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employi...The emergence of deep fake videos in recent years has made image falsification a real danger.A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employing deep learning to analyze speech or emotional content.Because of how clever these videos are frequently,Manipulation is challenging to spot.Social media are the most frequent and dangerous targets since they are weak outlets that are open to extortion or slander a human.In earlier times,it was not so easy to alter the videos,which required expertise in the domain and time.Nowadays,the generation of fake videos has become easier and with a high level of realism in the video.Deepfakes are forgeries and altered visual data that appear in still photos or video footage.Numerous automatic identification systems have been developed to solve this issue,however they are constrained to certain datasets and performpoorly when applied to different datasets.This study aims to develop an ensemble learning model utilizing a convolutional neural network(CNN)to handle deepfakes or Face2Face.We employed ensemble learning,a technique combining many classifiers to achieve higher prediction performance than a single classifier,boosting themodel’s accuracy.The performance of the generated model is evaluated on Face Forensics.This work is about building a new powerful model for automatically identifying deep fake videos with the DeepFake-Detection-Challenges(DFDC)dataset.We test our model using the DFDC,one of the most difficult datasets and get an accuracy of 96%.展开更多
The evolution of the internet and its accessibility in the twenty-first century has resulted in a tremendous increase in the use of social media platforms.Some social media sources contribute to the propagation of fak...The evolution of the internet and its accessibility in the twenty-first century has resulted in a tremendous increase in the use of social media platforms.Some social media sources contribute to the propagation of fake news that has no real validity,but they accumulate over time and begin to appear in the feed of every consumer producing even more ambiguity.To sustain the value of social media,such stories must be distinguished from the true ones.As a result,an automated system is required to save time and money.The classification of fake news and misinformation from social media data corpora is the subject of this research.Several preprocessing and data improvement procedures are used to gather and preprocess two fake news datasets.Deep text features are extracted using word embedding models Word2vec and Global Vectors for Word representation while textual features are extracted using n-gram approaches named Term Frequency-Inverse Document Frequency and Bag of Words from both datasets individually.Bidirectional Encoder Representations from Transformers(BERT)is also employed to derive embedded representations from the input data.Finally,three Machine Learning(ML)and two Deep Learning(DL)algorithms are utilized for fake news classification.BERT also carries out the classification of embedded outcomes generated by it in parallel with the ML and DL models.In terms of overall performance,the DL-based Convolutional Neural Network stands out in the case of the first while BERT performs better in the case of the second dataset.展开更多
Fake news and its significance carried the significance of affecting diverse aspects of diverse entities,ranging from a city lifestyle to a country global relativity,various methods are available to collect and determ...Fake news and its significance carried the significance of affecting diverse aspects of diverse entities,ranging from a city lifestyle to a country global relativity,various methods are available to collect and determine fake news.The recently developed machine learning(ML)models can be employed for the detection and classification of fake news.This study designs a novel Chaotic Ant Swarm with Weighted Extreme Learning Machine(CAS-WELM)for Cybersecurity Fake News Detection and Classification.The goal of the CAS-WELM technique is to discriminate news into fake and real.The CAS-WELM technique initially pre-processes the input data and Glove technique is used for word embed-ding process.Then,N-gram based feature extraction technique is derived to gen-erate feature vectors.Lastly,WELM model is applied for the detection and classification of fake news,in which the weight value of the WELM model can be optimally adjusted by the use of CAS algorithm.The performance validation of the CAS-WELM technique is carried out using the benchmark dataset and the results are inspected under several dimensions.The experimental results reported the enhanced outcomes of the CAS-WELM technique over the recent approaches.展开更多
This paper proposes a deep neural network(DNN)approach for detecting fake profiles in social networks.The DNN model is trained on a large dataset of real and fake profiles and is designed to learn complex features and...This paper proposes a deep neural network(DNN)approach for detecting fake profiles in social networks.The DNN model is trained on a large dataset of real and fake profiles and is designed to learn complex features and patterns that distinguish between the two types of profiles.In addition,the present research aims to determine the minimum set of profile data required for recognizing fake profiles on Facebook and propose the deep convolutional neural network method for fake accounts detection on social networks,which has been developed using 16 features based on content-based and profilebased features.The results demonstrated that the proposed method could detect fake profiles with an accuracy of 99.4%,equivalent to the achieved findings based on bigger data sets and more extensive profile information.The results were obtained with the minimum available profile data.In addition,in comparison with the other methods that use the same amount and kind of data,the proposed deep neural network gives an increase in accuracy of roughly 14%.The proposed model outperforms existing methods,achieving high accuracy and F1 score in identifying fake profiles.The associated findings indicate that the proposed model attained an average accuracy of 99%while considering two distinct scenarios:one with a single theme and another with a miscellaneous one.The results demonstrate the potential of DNNs in addressing the challenging problem of detecting fake profiles,which has significant implications for maintaining the authenticity and trustworthiness of online social networks.展开更多
Information-Centric Networking(ICN)is considered a viable strategy for regulating Internet consumption using the Internet’s underlying architecture.Although Named Data Networking(NDN)and its reference-based implement...Information-Centric Networking(ICN)is considered a viable strategy for regulating Internet consumption using the Internet’s underlying architecture.Although Named Data Networking(NDN)and its reference-based implementa-tion,the NDN Forwarding Daemon(NFD),are the most established ICN solu-tions,their vulnerability to the Content Poisoning Attack(CPA)is regarded as a severe threat that might dramatically impact this architecture.Content Poisoning can significantly minimize the impact of NDN’s universal data caching.Using verification signatures to protect against content poisoning attacks may be imprac-tical due to the associated costs and the volume of messages sent across the net-work,resulting in high computational costs.Therefore,in this research,we designed a method in NDN called Bird Swarm Optimization Algorithm-Based Content Poisoning Mitigation(BSO-Content Poisoning Mitigation Scheme).By aggregating the security information of entire routers along the full path,this sys-tem introduces the BSO to explore the secure transmission path and alter the con-tent retrieval procedure.Meanwhile,based on the determined trustworthy value of each node,the BSO-Content Poisoning Mitigation Scheme can bypass malicious routers,preventing them from disseminating illicit content in the future.Addition-ally,the suggested technique can minimize content poisoning utilizing removing erroneous Data packets from the cache-store during the pathfinding process.The proposed method has been subjected to extensive analysis compared with the ROM scheme and improved performance justified in several metrics.BSO-Con-tent Poisoning Mitigation Scheme is more efficient and faster than the ROM tech-nique in obtaining valid Data packets and resulting in a higher good cache hit ratio in a comparatively less amount of time.展开更多
Deep learning-based approaches are applied successfully in manyfields such as deepFake identification,big data analysis,voice recognition,and image recognition.Deepfake is the combination of deep learning in fake creati...Deep learning-based approaches are applied successfully in manyfields such as deepFake identification,big data analysis,voice recognition,and image recognition.Deepfake is the combination of deep learning in fake creation,which states creating a fake image or video with the help of artificial intelligence for political abuse,spreading false information,and pornography.The artificial intel-ligence technique has a wide demand,increasing the problems related to privacy,security,and ethics.This paper has analyzed the features related to the computer vision of digital content to determine its integrity.This method has checked the computer vision features of the image frames using the fuzzy clustering feature extraction method.By the proposed deep belief network with loss handling,the manipulation of video/image is found by means of a pairwise learning approach.This proposed approach has improved the accuracy of the detection rate by 98%on various datasets.展开更多
The term‘corpus’refers to a huge volume of structured datasets containing machine-readable texts.Such texts are generated in a natural communicative setting.The explosion of social media permitted individuals to spr...The term‘corpus’refers to a huge volume of structured datasets containing machine-readable texts.Such texts are generated in a natural communicative setting.The explosion of social media permitted individuals to spread data with minimal examination and filters freely.Due to this,the old problem of fake news has resurfaced.It has become an important concern due to its negative impact on the community.To manage the spread of fake news,automatic recognition approaches have been investigated earlier using Artificial Intelligence(AI)and Machine Learning(ML)techniques.To perform the medicinal text classification tasks,the ML approaches were applied,and they performed quite effectively.Still,a huge effort is required from the human side to generate the labelled training data.The recent progress of the Deep Learning(DL)methods seems to be a promising solution to tackle difficult types of Natural Language Processing(NLP)tasks,especially fake news detection.To unlock social media data,an automatic text classifier is highly helpful in the domain of NLP.The current research article focuses on the design of the Optimal Quad ChannelHybrid Long Short-Term Memory-based Fake News Classification(QCLSTM-FNC)approach.The presented QCLSTM-FNC approach aims to identify and differentiate fake news from actual news.To attain this,the proposed QCLSTM-FNC approach follows two methods such as the pre-processing data method and the Glovebased word embedding process.Besides,the QCLSTM model is utilized for classification.To boost the classification results of the QCLSTM model,a Quasi-Oppositional Sandpiper Optimization(QOSPO)algorithm is utilized to fine-tune the hyperparameters.The proposed QCLSTM-FNC approach was experimentally validated against a benchmark dataset.The QCLSTMFNC approach successfully outperformed all other existing DL models under different measures.展开更多
基金the National Natural Science Foundation of China(No.62302540)with author F.F.S.For more information,please visit their website at https://www.nsfc.gov.cn/.Additionally,it is also funded by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)+1 种基金where F.F.S is an author.Further details can be found at http://xt.hnkjt.gov.cn/data/pingtai/.The research is also supported by the Natural Science Foundation of Henan Province Youth Science Fund Project(No.232300420422)for more information,you can visit https://kjt.henan.gov.cn/2022/09-02/2599082.html.Lastly,it receives funding from the Natural Science Foundation of Zhongyuan University of Technology(No.K2023QN018),where F.F.S is an author.You can find more information at https://www.zut.edu.cn/.
文摘As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news.
基金Science and Technology Funds from the Liaoning Education Department(Serial Number:LJKZ0104).
文摘The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.
文摘Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics.
基金The authors are highly thankful to the National Social Science Foundation of China(20BXW101,18XXW015)Innovation Research Project for the Cultivation of High-Level Scientific and Technological Talents(Top-Notch Talents of theDiscipline)(ZZKY2022303)+3 种基金National Natural Science Foundation of China(Nos.62102451,62202496)Basic Frontier Innovation Project of Engineering University of People’s Armed Police(WJX202316)This work is also supported by National Natural Science Foundation of China(No.62172436)Engineering University of PAP’s Funding for Scientific Research Innovation Team,Engineering University of PAP’s Funding for Basic Scientific Research,and Engineering University of PAP’s Funding for Education and Teaching.Natural Science Foundation of Shaanxi Province(No.2023-JCYB-584).
文摘With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature to identify fake news,but these methods have limitations when dealing with news in specific domains.In order to solve the problem of weak feature correlation between data from different domains,a model for detecting fake news by integrating domain-specific emotional and semantic features is proposed.This method makes full use of the attention mechanism,grasps the correlation between different features,and effectively improves the effect of feature fusion.The algorithm first extracts the semantic features of news text through the Bi-LSTM(Bidirectional Long Short-Term Memory)layer to capture the contextual relevance of news text.Senta-BiLSTM is then used to extract emotional features and predict the probability of positive and negative emotions in the text.It then uses domain features as an enhancement feature and attention mechanism to fully capture more fine-grained emotional features associated with that domain.Finally,the fusion features are taken as the input of the fake news detection classifier,combined with the multi-task representation of information,and the MLP and Softmax functions are used for classification.The experimental results show that on the Chinese dataset Weibo21,the F1 value of this model is 0.958,4.9% higher than that of the sub-optimal model;on the English dataset FakeNewsNet,the F1 value of the detection result of this model is 0.845,1.8% higher than that of the sub-optimal model,which is advanced and feasible.
基金This research was funded by the General Project of Philosophy and Social Science of Heilongjiang Province,Grant Number:20SHB080.
文摘In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics.
基金supported by the National Natural Science Foundation of China(No.62302540)with author Fangfang Shan.For more information,please visit their website at https://www.nsfc.gov.cn/(accessed on 31/05/2024)+3 种基金Additionally,it is also funded by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)where Fangfang Shan is an author.Further details can be found at http://xt.hnkjt.gov.cn/data/pingtai/(accessed on 31/05/2024)supported by the Natural Science Foundation of Henan Province Youth Science Fund Project(No.232300420422)for more information,you can visit https://kjt.henan.gov.cn/2022/09-02/2599082.html(accessed on 31/05/2024).
文摘Social media has become increasingly significant in modern society,but it has also turned into a breeding ground for the propagation of misleading information,potentially causing a detrimental impact on public opinion and daily life.Compared to pure text content,multmodal content significantly increases the visibility and share ability of posts.This has made the search for efficient modality representations and cross-modal information interaction methods a key focus in the field of multimodal fake news detection.To effectively address the critical challenge of accurately detecting fake news on social media,this paper proposes a fake news detection model based on crossmodal message aggregation and a gated fusion network(MAGF).MAGF first uses BERT to extract cumulative textual feature representations and word-level features,applies Faster Region-based ConvolutionalNeuralNetwork(Faster R-CNN)to obtain image objects,and leverages ResNet-50 and Visual Geometry Group-19(VGG-19)to obtain image region features and global features.The image region features and word-level text features are then projected into a low-dimensional space to calculate a text-image affinity matrix for cross-modal message aggregation.The gated fusion network combines text and image region features to obtain adaptively aggregated features.The interaction matrix is derived through an attention mechanism and further integrated with global image features using a co-attention mechanism to producemultimodal representations.Finally,these fused features are fed into a classifier for news categorization.Experiments were conducted on two public datasets,Twitter and Weibo.Results show that the proposed model achieves accuracy rates of 91.8%and 88.7%on the two datasets,respectively,significantly outperforming traditional unimodal and existing multimodal models.
文摘Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the real one. Recently, many researchers have focused on understanding how deepkakes work and detecting using deep learning approaches. This paper introduces an explainable deepfake framework for images creation and classification. The framework consists of three main parts: the first approach is called Instant ID which is used to create deepfacke images from the original one;the second approach called Xception classifies the real and deepfake images;the third approach called Local Interpretable Model (LIME) provides a method for interpreting the predictions of any machine learning model in a local and interpretable manner. Our study proposes deepfake approach that achieves 100% precision and 100% accuracy for deepfake creation and classification. Furthermore, the results highlight the superior performance of the proposed model in deep fake creation and classification.
文摘China is a place where counterfeiting is not just popular,it’s a vibrant culture.From eggs made from calcium chloride and gelatin to cafés named'Sunbucks'(or worse),there are knockoff versions of almost every product imaginable.But'fake'doesn’t just refer to copycats.People can use'fake'(假jiǎ)to refer
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups Project under Grant Number(120/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R281)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4331004DSR32).
文摘Nowadays,the usage of socialmedia platforms is rapidly increasing,and rumours or false information are also rising,especially among Arab nations.This false information is harmful to society and individuals.Blocking and detecting the spread of fake news in Arabic becomes critical.Several artificial intelligence(AI)methods,including contemporary transformer techniques,BERT,were used to detect fake news.Thus,fake news in Arabic is identified by utilizing AI approaches.This article develops a new hunterprey optimization with hybrid deep learning-based fake news detection(HPOHDL-FND)model on the Arabic corpus.The HPOHDL-FND technique undergoes extensive data pre-processing steps to transform the input data into a useful format.Besides,the HPOHDL-FND technique utilizes long-term memory with a recurrent neural network(LSTM-RNN)model for fake news detection and classification.Finally,hunter prey optimization(HPO)algorithm is exploited for optimal modification of the hyperparameters related to the LSTM-RNN model.The performance validation of the HPOHDL-FND technique is tested using two Arabic datasets.The outcomes exemplified better performance over the other existing techniques with maximum accuracy of 96.57%and 93.53%on Covid19Fakes and satirical datasets,respectively.
文摘In view of the various adverse effects,fake news detection has become an extremely important task.So far,many detection methods have been proposed,but these methods still have some limitations.For example,only two independently encoded unimodal information are concatenated together,but not integrated with multimodal information to complete the complementary information,and to obtain the correlated information in the news content.This simple fusion approach may lead to the omission of some information and bring some interference to the model.To solve the above problems,this paper proposes the FakeNewsDetectionmodel based on BLIP(FNDB).First,the XLNet and VGG-19 based feature extractors are used to extract textual and visual feature representation respectively,and BLIP based multimodal feature extractor to obtain multimodal feature representation in news content.Then,the feature fusion layer will fuse these features with the help of the cross-modal attention module to promote various modal feature representations for information complementation.The fake news detector uses these fused features to identify the input content,and finally complete fake news detection.Based on this design,FNDB can extract as much information as possible from the news content and fuse the information between multiple modalities effectively.The fake news detector in the FNDB can also learn more information to achieve better performance.The verification experiments on Weibo and Gossipcop,two widely used real-world datasets,show that FNDB is 4.4%and 0.6%higher in accuracy than the state-of-theart fake news detection methods,respectively.
文摘In the past few years,social media and online news platforms have played an essential role in distributing news content rapidly.Consequently.verification of the authenticity of news has become a major challenge.During the COVID-19 outbreak,misinformation and fake news were major sources of confusion and insecurity among the general public.In the first quarter of the year 2020,around 800 people died due to fake news relevant to COVID-19.The major goal of this research was to discover the best learning model for achieving high accuracy and performance.A novel case study of the Fake News Classification using ELECTRA model,which achieved 85.11%accuracy score,is thus reported in this manuscript.In addition to that,a new novel dataset called COVAX-Reality containing COVID-19 vaccine-related news has been contributed.Using the COVAX-Reality dataset,the performance of FNEC is compared to several traditional learning models i.e.,Support Vector Machine(SVM),Naive Bayes(NB),Passive Aggressive Classifier(PAC),Long Short-Term Memory(LSTM),Bi-directional LSTM(Bi-LSTM)and Bi-directional Encoder Representations from Transformers(BERT).For the evaluation of FNEC,standard metrics(Precision,Recall,Accuracy,and F1-Score)were utilized.
基金supported by the National Science and Technology Council,Taiwan,under grants MOST 108-2410-H-027-020,MOST 109-2410-H-027-009-MY2 and MOST 111-2410-H-027-011-MY3.
文摘In 2021,the abnormal short-term price fluctuations of GameStop,which were triggered by internet stock discussions,drew the attention of academics,financial analysts,and stock trading commissions alike,prompting calls to address such events and maintain market stability.However,the impact of stock discussions on volatile trading behavior has received comparatively less attention than traditional fundamentals.Furthermore,data mining methods are less often used to predict stock trading despite their higher accuracy.This study adopts an innovative approach using social media data to obtain stock rumors,and then trains three decision trees to demonstrate the impact of rumor propagation on stock trading behavior.Our findings show that rumor propagation outperforms traditional fundamentals in predicting abnormal trading behavior.The study serves as an impetus for further research using data mining as a method of inquiry.
文摘The growth of the internet and technology has had a significant effect on social interactions.False information has become an important research topic due to the massive amount of misinformed content on social networks.It is very easy for any user to spread misinformation through the media.Therefore,misinformation is a problem for professionals,organizers,and societies.Hence,it is essential to observe the credibility and validity of the News articles being shared on social media.The core challenge is to distinguish the difference between accurate and false information.Recent studies focus on News article content,such as News titles and descriptions,which has limited their achievements.However,there are two ordinarily agreed-upon features of misinformation:first,the title and text of an article,and second,the user engagement.In the case of the News context,we extracted different user engagements with articles,for example,tweets,i.e.,read-only,user retweets,likes,and shares.We calculate user credibility and combine it with article content with the user’s context.After combining both features,we used three Natural language processing(NLP)feature extraction techniques,i.e.,Term Frequency-Inverse Document Frequency(TF-IDF),Count-Vectorizer(CV),and Hashing-Vectorizer(HV).Then,we applied different machine learning classifiers to classify misinformation as real or fake.Therefore,we used a Support Vector Machine(SVM),Naive Byes(NB),Random Forest(RF),Decision Tree(DT),Gradient Boosting(GB),and K-Nearest Neighbors(KNN).The proposed method has been tested on a real-world dataset,i.e.,“fakenewsnet”.We refine the fakenewsnet dataset repository according to our required features.The dataset contains 23000+articles with millions of user engagements.The highest accuracy score is 93.4%.The proposed model achieves its highest accuracy using count vector features and a random forest classifier.Our discoveries confirmed that the proposed classifier would effectively classify misinformation in social networks.
文摘The emergence of deep fake videos in recent years has made image falsification a real danger.A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employing deep learning to analyze speech or emotional content.Because of how clever these videos are frequently,Manipulation is challenging to spot.Social media are the most frequent and dangerous targets since they are weak outlets that are open to extortion or slander a human.In earlier times,it was not so easy to alter the videos,which required expertise in the domain and time.Nowadays,the generation of fake videos has become easier and with a high level of realism in the video.Deepfakes are forgeries and altered visual data that appear in still photos or video footage.Numerous automatic identification systems have been developed to solve this issue,however they are constrained to certain datasets and performpoorly when applied to different datasets.This study aims to develop an ensemble learning model utilizing a convolutional neural network(CNN)to handle deepfakes or Face2Face.We employed ensemble learning,a technique combining many classifiers to achieve higher prediction performance than a single classifier,boosting themodel’s accuracy.The performance of the generated model is evaluated on Face Forensics.This work is about building a new powerful model for automatically identifying deep fake videos with the DeepFake-Detection-Challenges(DFDC)dataset.We test our model using the DFDC,one of the most difficult datasets and get an accuracy of 96%.
文摘The evolution of the internet and its accessibility in the twenty-first century has resulted in a tremendous increase in the use of social media platforms.Some social media sources contribute to the propagation of fake news that has no real validity,but they accumulate over time and begin to appear in the feed of every consumer producing even more ambiguity.To sustain the value of social media,such stories must be distinguished from the true ones.As a result,an automated system is required to save time and money.The classification of fake news and misinformation from social media data corpora is the subject of this research.Several preprocessing and data improvement procedures are used to gather and preprocess two fake news datasets.Deep text features are extracted using word embedding models Word2vec and Global Vectors for Word representation while textual features are extracted using n-gram approaches named Term Frequency-Inverse Document Frequency and Bag of Words from both datasets individually.Bidirectional Encoder Representations from Transformers(BERT)is also employed to derive embedded representations from the input data.Finally,three Machine Learning(ML)and two Deep Learning(DL)algorithms are utilized for fake news classification.BERT also carries out the classification of embedded outcomes generated by it in parallel with the ML and DL models.In terms of overall performance,the DL-based Convolutional Neural Network stands out in the case of the first while BERT performs better in the case of the second dataset.
基金This research was supported by the Researchers Supporting Program(TUMA-Project2021-27)Almaarefa UniversityRiyadh,Saudi Arabia.Taif University Researchers Supporting Project number(TURSP-2020/161)Taif University,Taif,Saudi Arabia.
文摘Fake news and its significance carried the significance of affecting diverse aspects of diverse entities,ranging from a city lifestyle to a country global relativity,various methods are available to collect and determine fake news.The recently developed machine learning(ML)models can be employed for the detection and classification of fake news.This study designs a novel Chaotic Ant Swarm with Weighted Extreme Learning Machine(CAS-WELM)for Cybersecurity Fake News Detection and Classification.The goal of the CAS-WELM technique is to discriminate news into fake and real.The CAS-WELM technique initially pre-processes the input data and Glove technique is used for word embed-ding process.Then,N-gram based feature extraction technique is derived to gen-erate feature vectors.Lastly,WELM model is applied for the detection and classification of fake news,in which the weight value of the WELM model can be optimally adjusted by the use of CAS algorithm.The performance validation of the CAS-WELM technique is carried out using the benchmark dataset and the results are inspected under several dimensions.The experimental results reported the enhanced outcomes of the CAS-WELM technique over the recent approaches.
文摘This paper proposes a deep neural network(DNN)approach for detecting fake profiles in social networks.The DNN model is trained on a large dataset of real and fake profiles and is designed to learn complex features and patterns that distinguish between the two types of profiles.In addition,the present research aims to determine the minimum set of profile data required for recognizing fake profiles on Facebook and propose the deep convolutional neural network method for fake accounts detection on social networks,which has been developed using 16 features based on content-based and profilebased features.The results demonstrated that the proposed method could detect fake profiles with an accuracy of 99.4%,equivalent to the achieved findings based on bigger data sets and more extensive profile information.The results were obtained with the minimum available profile data.In addition,in comparison with the other methods that use the same amount and kind of data,the proposed deep neural network gives an increase in accuracy of roughly 14%.The proposed model outperforms existing methods,achieving high accuracy and F1 score in identifying fake profiles.The associated findings indicate that the proposed model attained an average accuracy of 99%while considering two distinct scenarios:one with a single theme and another with a miscellaneous one.The results demonstrate the potential of DNNs in addressing the challenging problem of detecting fake profiles,which has significant implications for maintaining the authenticity and trustworthiness of online social networks.
文摘Information-Centric Networking(ICN)is considered a viable strategy for regulating Internet consumption using the Internet’s underlying architecture.Although Named Data Networking(NDN)and its reference-based implementa-tion,the NDN Forwarding Daemon(NFD),are the most established ICN solu-tions,their vulnerability to the Content Poisoning Attack(CPA)is regarded as a severe threat that might dramatically impact this architecture.Content Poisoning can significantly minimize the impact of NDN’s universal data caching.Using verification signatures to protect against content poisoning attacks may be imprac-tical due to the associated costs and the volume of messages sent across the net-work,resulting in high computational costs.Therefore,in this research,we designed a method in NDN called Bird Swarm Optimization Algorithm-Based Content Poisoning Mitigation(BSO-Content Poisoning Mitigation Scheme).By aggregating the security information of entire routers along the full path,this sys-tem introduces the BSO to explore the secure transmission path and alter the con-tent retrieval procedure.Meanwhile,based on the determined trustworthy value of each node,the BSO-Content Poisoning Mitigation Scheme can bypass malicious routers,preventing them from disseminating illicit content in the future.Addition-ally,the suggested technique can minimize content poisoning utilizing removing erroneous Data packets from the cache-store during the pathfinding process.The proposed method has been subjected to extensive analysis compared with the ROM scheme and improved performance justified in several metrics.BSO-Con-tent Poisoning Mitigation Scheme is more efficient and faster than the ROM tech-nique in obtaining valid Data packets and resulting in a higher good cache hit ratio in a comparatively less amount of time.
文摘Deep learning-based approaches are applied successfully in manyfields such as deepFake identification,big data analysis,voice recognition,and image recognition.Deepfake is the combination of deep learning in fake creation,which states creating a fake image or video with the help of artificial intelligence for political abuse,spreading false information,and pornography.The artificial intel-ligence technique has a wide demand,increasing the problems related to privacy,security,and ethics.This paper has analyzed the features related to the computer vision of digital content to determine its integrity.This method has checked the computer vision features of the image frames using the fuzzy clustering feature extraction method.By the proposed deep belief network with loss handling,the manipulation of video/image is found by means of a pairwise learning approach.This proposed approach has improved the accuracy of the detection rate by 98%on various datasets.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R281)PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4331004DSR41).
文摘The term‘corpus’refers to a huge volume of structured datasets containing machine-readable texts.Such texts are generated in a natural communicative setting.The explosion of social media permitted individuals to spread data with minimal examination and filters freely.Due to this,the old problem of fake news has resurfaced.It has become an important concern due to its negative impact on the community.To manage the spread of fake news,automatic recognition approaches have been investigated earlier using Artificial Intelligence(AI)and Machine Learning(ML)techniques.To perform the medicinal text classification tasks,the ML approaches were applied,and they performed quite effectively.Still,a huge effort is required from the human side to generate the labelled training data.The recent progress of the Deep Learning(DL)methods seems to be a promising solution to tackle difficult types of Natural Language Processing(NLP)tasks,especially fake news detection.To unlock social media data,an automatic text classifier is highly helpful in the domain of NLP.The current research article focuses on the design of the Optimal Quad ChannelHybrid Long Short-Term Memory-based Fake News Classification(QCLSTM-FNC)approach.The presented QCLSTM-FNC approach aims to identify and differentiate fake news from actual news.To attain this,the proposed QCLSTM-FNC approach follows two methods such as the pre-processing data method and the Glovebased word embedding process.Besides,the QCLSTM model is utilized for classification.To boost the classification results of the QCLSTM model,a Quasi-Oppositional Sandpiper Optimization(QOSPO)algorithm is utilized to fine-tune the hyperparameters.The proposed QCLSTM-FNC approach was experimentally validated against a benchmark dataset.The QCLSTMFNC approach successfully outperformed all other existing DL models under different measures.