The notion of “exceptional family of elements (EFE)” plays a very important role in solving complementarity prob- lems. It has been applied in finite dimensional spaces and Hilbert spaces by many authors. In this pa...The notion of “exceptional family of elements (EFE)” plays a very important role in solving complementarity prob- lems. It has been applied in finite dimensional spaces and Hilbert spaces by many authors. In this paper, by using the generalized projection defined by Alber, we extend this notion from Hilbert spaces to uniformly smooth and uniformly convex Banach spaces, and apply this extension to the study of nonlinear complementarity problems in Banach spaces.展开更多
Old astrocyte specifically induced substance (OASIS) is an endoplasmic reticulum (ER) stress transducer specifically expressed in astrocytes and osteoblasts. OASIS regulates the differentiation of neural precursor...Old astrocyte specifically induced substance (OASIS) is an endoplasmic reticulum (ER) stress transducer specifically expressed in astrocytes and osteoblasts. OASIS regulates the differentiation of neural precursor cells into astrocytes in the central nervous system. This study aimed to elucidate the involvement of ER stress responses stimulated via OASIS in astrogliosis following spinal cord injury. In a mouse model of spinal cord contusion injury, OASIS mRNA and protein expression were evaluated at days 7 and 14. A significant increase in OASIS mRNA on day 7 and an increase in protein on days 7 and 14 was observed in injured spinal cords. Immunostaining on day 7 revealed co-localization of OASIS and astrocytes in the periphery of the injury site. Furthermore, anti-OASIS small interfering RNA (siRNA) was injected at the injury sites on day 5 to elucidate the function of OASIS. Treatment with anti-OASIS siRNA caused a significant decrease in OASIS mRNA on day 7 and protein on days 7 and 14, and was associated with the inhibition of astrogliosis and hindlimb motor function recovery. Results of our study show that OASIS expression synchronizes with astrogliosis and is functionally associated with astrogliosis after spinal cord injury.展开更多
文摘The notion of “exceptional family of elements (EFE)” plays a very important role in solving complementarity prob- lems. It has been applied in finite dimensional spaces and Hilbert spaces by many authors. In this paper, by using the generalized projection defined by Alber, we extend this notion from Hilbert spaces to uniformly smooth and uniformly convex Banach spaces, and apply this extension to the study of nonlinear complementarity problems in Banach spaces.
基金supported by MEXT/JSPS KAKENHI Grant-in-Aid for Scientific Research(C)to NK(Grant No.17K10931)
文摘Old astrocyte specifically induced substance (OASIS) is an endoplasmic reticulum (ER) stress transducer specifically expressed in astrocytes and osteoblasts. OASIS regulates the differentiation of neural precursor cells into astrocytes in the central nervous system. This study aimed to elucidate the involvement of ER stress responses stimulated via OASIS in astrogliosis following spinal cord injury. In a mouse model of spinal cord contusion injury, OASIS mRNA and protein expression were evaluated at days 7 and 14. A significant increase in OASIS mRNA on day 7 and an increase in protein on days 7 and 14 was observed in injured spinal cords. Immunostaining on day 7 revealed co-localization of OASIS and astrocytes in the periphery of the injury site. Furthermore, anti-OASIS small interfering RNA (siRNA) was injected at the injury sites on day 5 to elucidate the function of OASIS. Treatment with anti-OASIS siRNA caused a significant decrease in OASIS mRNA on day 7 and protein on days 7 and 14, and was associated with the inhibition of astrogliosis and hindlimb motor function recovery. Results of our study show that OASIS expression synchronizes with astrogliosis and is functionally associated with astrogliosis after spinal cord injury.