Growing consumer interest in distributed Building Integrated Photovoltaic (BIPV) Systems and industry competition to reduce installation costs are stimulating the development of deploying these materials to the reside...Growing consumer interest in distributed Building Integrated Photovoltaic (BIPV) Systems and industry competition to reduce installation costs are stimulating the development of deploying these materials to the residential sector of the building industry. This emerging market continues to attract the attention of many stakeholders, yet cohesive opportunities to deploy in residential sectors, specifically detached single-family dwellings, is scattered. As a result, this study of literature and implementation strategies through simple examples looks to identify several characteristics related to BIPV. Characteristics that were studied in this initial pilot study were design considerations for system selection, applicability to residential construction, and system and material options and enhancements. A case-study home was analyzed demonstrating opportunity for implementation of BIPV on an existing residence. Strategies for maximizing the energy-generating capacity of the system to achieve net-zero energy performance, including all building surfaces and landscaping were also explored. This body of work provides a state-of-the-art review on common materials as well as the more customizable types.展开更多
Large-scale, grid-connected photovoltaic sys- tems have become an essential part of modem electric power distribution systems. In this paper, a novel approach based on the Markov method has been proposed to investigat...Large-scale, grid-connected photovoltaic sys- tems have become an essential part of modem electric power distribution systems. In this paper, a novel approach based on the Markov method has been proposed to investigate the effects of large-scale, grid-connected photovoltaic systems on the reliability of bulk power systems. The proposed method serves as an applicable tool to estimate performance (e.g., energy yield and capacity) as well as reliability indices. The Markov method frame- work has been incorporated with the' multi-state models to develop energy states of the photovoltaic systems in order to quantify the effects of the photovoltaic systems on the power system adequacy. Such analysis assists planners to make adequate decisions based on the economical expectations as well as to ensure the recovery of the investment costs over time. The failure states of the components of photovoltaic systems have been considered to evaluate the sensitivity analysis and the adequacy indices including loss of load expectation, and expected energy not supplied. Moreover, the impacts of transitions between failures on the reliability calculations as well as on the long- term operation of the photovoltaic systems have been illustrated. Simulation results on the Roy Billinton test system has been shown to illustrate the procedure of the proposed frame work and evaluate the reliability benefits of using large-scale, grid-connected photovoltaic system on the bulk electric power systems. The proposed method can be easily extended to estimate the operating and maintenance costs for the financial planning of the photovoltaic system projects.展开更多
Due to the fuel security and environmental concerns of traditional energy resources like fossil fuels,grid operators are tending to use renewable energies as the primary energy supply.This paper presents the study of ...Due to the fuel security and environmental concerns of traditional energy resources like fossil fuels,grid operators are tending to use renewable energies as the primary energy supply.This paper presents the study of designing,simulation and analysis of a 100-kWp on-grid photovoltaic power plant(PV-PP)in north-western Iran.Accurate meteorological data,satellite images and local knowledge from this region have narrowed down the options to three highly irradiated cities of Maragheh,Mahabad and Khalkhal in this region.PVsyst and MATLAB software are used in this paper to obtain the performance results.Environmental effects and carbon-emission savings from the execution of the proposed PV-PP are also available in this paper.The result of this study shows that PV-PP installation in Maragheh will have higher energy output than the two other cities.This study is insightful for the academics and the grid stakeholders in finding optimal spots in north-western Iran to construct a PV-PP.Also,recommendations are available for future studies.展开更多
文摘Growing consumer interest in distributed Building Integrated Photovoltaic (BIPV) Systems and industry competition to reduce installation costs are stimulating the development of deploying these materials to the residential sector of the building industry. This emerging market continues to attract the attention of many stakeholders, yet cohesive opportunities to deploy in residential sectors, specifically detached single-family dwellings, is scattered. As a result, this study of literature and implementation strategies through simple examples looks to identify several characteristics related to BIPV. Characteristics that were studied in this initial pilot study were design considerations for system selection, applicability to residential construction, and system and material options and enhancements. A case-study home was analyzed demonstrating opportunity for implementation of BIPV on an existing residence. Strategies for maximizing the energy-generating capacity of the system to achieve net-zero energy performance, including all building surfaces and landscaping were also explored. This body of work provides a state-of-the-art review on common materials as well as the more customizable types.
文摘Large-scale, grid-connected photovoltaic sys- tems have become an essential part of modem electric power distribution systems. In this paper, a novel approach based on the Markov method has been proposed to investigate the effects of large-scale, grid-connected photovoltaic systems on the reliability of bulk power systems. The proposed method serves as an applicable tool to estimate performance (e.g., energy yield and capacity) as well as reliability indices. The Markov method frame- work has been incorporated with the' multi-state models to develop energy states of the photovoltaic systems in order to quantify the effects of the photovoltaic systems on the power system adequacy. Such analysis assists planners to make adequate decisions based on the economical expectations as well as to ensure the recovery of the investment costs over time. The failure states of the components of photovoltaic systems have been considered to evaluate the sensitivity analysis and the adequacy indices including loss of load expectation, and expected energy not supplied. Moreover, the impacts of transitions between failures on the reliability calculations as well as on the long- term operation of the photovoltaic systems have been illustrated. Simulation results on the Roy Billinton test system has been shown to illustrate the procedure of the proposed frame work and evaluate the reliability benefits of using large-scale, grid-connected photovoltaic system on the bulk electric power systems. The proposed method can be easily extended to estimate the operating and maintenance costs for the financial planning of the photovoltaic system projects.
文摘Due to the fuel security and environmental concerns of traditional energy resources like fossil fuels,grid operators are tending to use renewable energies as the primary energy supply.This paper presents the study of designing,simulation and analysis of a 100-kWp on-grid photovoltaic power plant(PV-PP)in north-western Iran.Accurate meteorological data,satellite images and local knowledge from this region have narrowed down the options to three highly irradiated cities of Maragheh,Mahabad and Khalkhal in this region.PVsyst and MATLAB software are used in this paper to obtain the performance results.Environmental effects and carbon-emission savings from the execution of the proposed PV-PP are also available in this paper.The result of this study shows that PV-PP installation in Maragheh will have higher energy output than the two other cities.This study is insightful for the academics and the grid stakeholders in finding optimal spots in north-western Iran to construct a PV-PP.Also,recommendations are available for future studies.