Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a w...Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.展开更多
We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a poly...In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a polynomial of degree p(p 1).For each f∈F and z∈D,if f and f sharedα(z)CM and|f(k)(z)|K whenever f(z)-α(z)=0 in D, then F is normal in D.展开更多
We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods...We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods and Function Theory, 2001, 1 (1): 289-299], and generalized two new normality criterions. Let F be a family of meromorphic functions in a domain D, a a non-zero finite complex number, B a positive real number, and k and m two positive integers satisfying m〉2k+4. If every function denoted by f belonging to F has only zeros with multiplicity at least k and satisfies f^m(z)f^(k)(Z)=α→ |^f(k)(z)| ≤B or f^m(z)f^(k)(z)=α→|f(z)| ≥, then F is normal in D.展开更多
In this paper,we study the normality criterion for families of meromorphic functions concerning shared set depending on f∈F.Let F be a family of meromorphic functions in the unit disc A.For each f∈F,all zeros of f h...In this paper,we study the normality criterion for families of meromorphic functions concerning shared set depending on f∈F.Let F be a family of meromorphic functions in the unit disc A.For each f∈F,all zeros of f have multiplicity at least 2 and there exist nonzero complex numbers b_f,c_f satisfying(i) b_f/c_f is a constant;(ii) min{σ(0,b_f),σ(0,c_f),σ(b_f,c_f)} ≥m for some m > 0;(iii) E_f'(S_f)■ E_f(S_f),where S_f = {b_f,c_f}.Then F is normal in A.At the same time,the corresponding results are also proved.The results in this paper improve and generalize the related results展开更多
We studied the normality criterion for families of meromorphic functions related to shared sets. Let F be a family of meromorphic functions on the unit disc △, a and b be distinct non-zero values, S={a,b}, and k be a...We studied the normality criterion for families of meromorphic functions related to shared sets. Let F be a family of meromorphic functions on the unit disc △, a and b be distinct non-zero values, S={a,b}, and k be a positive integer. If for every f∈ F, i) the zeros of f(z) have a multiplicity of at least k+ 1, and ii) E^-f(k)(S) lohtain in E^-f(S), then F is normal on .4. At the same time, the corresponding results of normal function are also proved.展开更多
Let k be a positive integer,let h be a holomorphic function in a domain D,h■0and let F be a family of nonvanishing meromorphic functions in D.If each pair of functions f and q in F,f^((k)) and g^((k)) share h in D,th...Let k be a positive integer,let h be a holomorphic function in a domain D,h■0and let F be a family of nonvanishing meromorphic functions in D.If each pair of functions f and q in F,f^((k)) and g^((k)) share h in D,then F is normal in D.展开更多
In this paper,we study the normal criterion of meromorphic functions concerning shared analytic function.We get some theorems concerning shared analytic function,which improves some earlier related results.
In theorem LP [1], Liu proves the theorem when <em>N</em> = 2, but it can’t be ex-tended to the general case in his proof. So we consider the condition that the families of holomorphic curves share eleven...In theorem LP [1], Liu proves the theorem when <em>N</em> = 2, but it can’t be ex-tended to the general case in his proof. So we consider the condition that the families of holomorphic curves share eleven hyperplanes, and we get the theorem 1.1.展开更多
基金The first author is supported in part by the Post Doctoral Fellowship at Shandong University.The second author is supported by the national Nature Science Foundation of China (10371065).
文摘Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.
基金supported by Nature Science Foundation of China(11461070),supported by Nature Science Foundation of China(11271227)PCSIRT(IRT1264)
文摘We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
基金Supported by the Scientific Research Starting Foundation for Master and Ph.D.of Honghe University(XSS08012)Supported by Scientific Research Fund of Yunnan Provincial Education Department of China Grant(09C0206)
文摘In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a polynomial of degree p(p 1).For each f∈F and z∈D,if f and f sharedα(z)CM and|f(k)(z)|K whenever f(z)-α(z)=0 in D, then F is normal in D.
文摘We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods and Function Theory, 2001, 1 (1): 289-299], and generalized two new normality criterions. Let F be a family of meromorphic functions in a domain D, a a non-zero finite complex number, B a positive real number, and k and m two positive integers satisfying m〉2k+4. If every function denoted by f belonging to F has only zeros with multiplicity at least k and satisfies f^m(z)f^(k)(Z)=α→ |^f(k)(z)| ≤B or f^m(z)f^(k)(z)=α→|f(z)| ≥, then F is normal in D.
基金Supported by the National Natural Science Foundation of China(l1461070, 11271090) Supported by the Natural Science Foundation of Guangdong Province(S2012010010121)
文摘In this paper,we study the normality criterion for families of meromorphic functions concerning shared set depending on f∈F.Let F be a family of meromorphic functions in the unit disc A.For each f∈F,all zeros of f have multiplicity at least 2 and there exist nonzero complex numbers b_f,c_f satisfying(i) b_f/c_f is a constant;(ii) min{σ(0,b_f),σ(0,c_f),σ(b_f,c_f)} ≥m for some m > 0;(iii) E_f'(S_f)■ E_f(S_f),where S_f = {b_f,c_f}.Then F is normal in A.At the same time,the corresponding results are also proved.The results in this paper improve and generalize the related results
文摘We studied the normality criterion for families of meromorphic functions related to shared sets. Let F be a family of meromorphic functions on the unit disc △, a and b be distinct non-zero values, S={a,b}, and k be a positive integer. If for every f∈ F, i) the zeros of f(z) have a multiplicity of at least k+ 1, and ii) E^-f(k)(S) lohtain in E^-f(S), then F is normal on .4. At the same time, the corresponding results of normal function are also proved.
基金Supported by the National Natural Science Foundation of China(l1371149, 11301076, 11201219)
文摘Let k be a positive integer,let h be a holomorphic function in a domain D,h■0and let F be a family of nonvanishing meromorphic functions in D.If each pair of functions f and q in F,f^((k)) and g^((k)) share h in D,then F is normal in D.
基金Supported by the National Natural Science Foundation of China(Grant No.11961068).
文摘In this paper,we study the normal criterion of meromorphic functions concerning shared analytic function.We get some theorems concerning shared analytic function,which improves some earlier related results.
文摘In theorem LP [1], Liu proves the theorem when <em>N</em> = 2, but it can’t be ex-tended to the general case in his proof. So we consider the condition that the families of holomorphic curves share eleven hyperplanes, and we get the theorem 1.1.