This paper presents the design of a novel honeycomb structure with a double curved beam.The purpose of this design is to achieve vibration isolation for the main engine of an offshore platform and reduce impact loads....This paper presents the design of a novel honeycomb structure with a double curved beam.The purpose of this design is to achieve vibration isolation for the main engine of an offshore platform and reduce impact loads.An analytical formula for the force-displacement relationship of the honeycomb single-cell structure is presented based on the modal superposition method.This formula provides a theoretical basis for predicting the compression performance of honeycomb structures.The effects of structural geometric parameters,series and parallel connection methods on the mechanical and energy absorption properties are investigated through mathematical modeling and experimental methods.Furthermore,the study focuses on the vibration isolation and impact resistance performance of honeycomb panels.The results show that the designed honeycomb structure has good mechanical and energy absorption performance,and its energy absorption effect is related to the geometric parameters and series and parallel connection methods of the structure.The isolation efficiency of the honeycomb with 4 rows and 3 columns reaches 38%.The initial isolation frequency of the isolator is 11.7 Hz.展开更多
Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in induci...Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in inducing loess landslides.This study focuses on three neighboring cities sequentially situated on the Loess Plateau along the direction of aeolian deposition of loess,namely Lanzhou,Dingxi,and Tianshui,which are densely populated and prone to landslide disasters.The variations in hydraulic properties,including water retention capacity and permeability,are investigated through Soil Water Characteristic Curve(SWCC)test and hydraulic conductivity test.The experimental findings revealed that Tianshui loess exhibited the highest water retention capacity,followed by Dingxi loess,while Lanzhou loess demonstrated the lowest water retention capacity.Contrastingly,the results for the saturated permeability coefficient were found to be the opposite:Tianshui loess showed the lowest permeability,whereas Lanzhou loess displayed the highest permeability.These results are supported and analyzed by scanning electron microscopy(SEM)observation.In addition,the water retention capacity is mathematically expressed using the van Genuchten model and extended to predict unsaturated hydraulic properties of loess.The experimental results exhibit a strong accordance with one another and align with the regional distribution patterns of disasters.展开更多
The universal cluster expansion technique was used in this study to determine the binary phase diagrams for the transition metal carbonate precursors MCO3(M:Mn,Ni,Co).The use of mixed cathode materials in lithium-ion ...The universal cluster expansion technique was used in this study to determine the binary phase diagrams for the transition metal carbonate precursors MCO3(M:Mn,Ni,Co).The use of mixed cathode materials in lithium-ion batteries such as NMC(Ni,Mn and Co)formulations,is a strategic approach to optimize performance,enhance safety and address cost and environmental considerations in the rapidly evolving field of energy storage.This study focuses on the cost issue related to lithium ion batteries by investigating the manganese rich NMC since manganese is more abundant and cost-effective.We doped MnCO3 with nickel and doped MnCO3 with cobalt then ran cluster expansion calculations to generate binary phases.The binary phase diagrams generated indicated that doping MnCO3 with nickel favours the Mn-rich side,while doping MnCO3 with cobalt favours 50%Mn-rich and 50%Co-rich.We further extracted the most stable structures from both binary diagrams and determined their electronic,mechanical and vibrational stabilities using DFT(density functional theory)calculations within the LDA(local gradient approximation)with Hubbard parameter(U).The electronic properties revealed that both materials are semiconductors due to their narrow energy band gap obtained while the mechanical properties showed that structures are mechanically stable since their necessary conditions for trigonal and triclinic systems were satisfied.展开更多
Potential energy curves govern the properties of materials. A critical analysis of the potential energy curve helps better understand the properties of the material. Potential energy curve and in turn the properties o...Potential energy curves govern the properties of materials. A critical analysis of the potential energy curve helps better understand the properties of the material. Potential energy curve and in turn the properties of any material depend on the composition, bonding, crystal structure, their mechanical processing and microstructure. The type, strength, and directionality of atomic bonding controls the structure and material properties viz., melting temperature, thermal expansion, elastic stiffness, electrical properties, ductility and toughness etc. This paper attempts to bring out the correlation between the potential energy curves with the properties of materials.展开更多
Objective To explore the biological properties of keratinocytes from differently-aged healthy human beings. Methods Keratinocytes from fetus,teenager and middle-aged groups were separated and cultured. The population ...Objective To explore the biological properties of keratinocytes from differently-aged healthy human beings. Methods Keratinocytes from fetus,teenager and middle-aged groups were separated and cultured. The population doubling time (PDT) and cell growth curve in different cells were compared,and the cell cycles were analyzed by flow cytometry. Results ① In primary culture of keratinocytes,the adherence time in middle-aged group was longer than that in fetus and teenager groups. However,all cell morphology showed no obvious differences. In subculture of keratinocytes,with donator’s age increasing,time of cell adherence prolonged,passage number decreased and differences in cell morphology were obvious. ② The average PDT of keratinocytes was shorter in fetus group than in teenager and middle-aged groups. But difference in cell growth curve between different passages was not observed. ③ Keratinocytes showed G2/M period in fetus group but G0/G1 period in teenager and middle-aged groups mainly. Conclusion As age increases,the biological properties of keratinocytes change obviously.展开更多
Fibre bundle tensile curves can be used to characterise fibre processing properties and end-use performance directly and to predict single-fibre properties in theory. In this paper, the tensile behaviour of polyester ...Fibre bundle tensile curves can be used to characterise fibre processing properties and end-use performance directly and to predict single-fibre properties in theory. In this paper, the tensile behaviour of polyester fibre-bundles has been analysed in characteristic values and diagramming. The characteristic distributions which include the symmetry distribution on right part, SRBS′ (e), on left part, SLBS′(e) and the curve on base-line modification, MBS′ (e),based on the modulus distribution, BS′ (e), as well as the frequency density function of broken fibres, B′ (e), have been derived from the tail of bundle tensile curves. The theoretical and measured results show that the most important curves are MBS′ ( e ) and B′ ( e ) and can be used to estimate the breaking-extension distribution of single fibres. Especially for MBS′(e), the modulus distribution can accurately characterize single-fibre tensile properties and is no limitation as the calculation of B′(e) because the bundle specific stress Y(e) of no fibre breaking at extension e should be found at first.展开更多
In this report,two new contact structures of a vacuum interrupter with a sinusoidal curved surface are proposed to improve the capability by increasing the surface area.The experimental investigation of vacuum arc at ...In this report,two new contact structures of a vacuum interrupter with a sinusoidal curved surface are proposed to improve the capability by increasing the surface area.The experimental investigation of vacuum arc at intermediate frequency(360-800 Hz)was conducted and the results were compared with a butt contact with the same contact diameter(41 mm)and the same material.By analyzing the arc behavior,arc voltage characteristics,arc energy,current interrupting capacity,ablation of the anode contact and condensation of the arc products at a 3 mm gap,the differences in their vacuum arc characteristics were determined.The correlations of their arc energy with the amplitude and the frequency of the current were also achieved.Analysis suggests that the ruled curved contact has strong application potentiality because of its low arc energy,low arc voltage noise and arc voltage peak,light ablation on the surface of the anode contact and high interrupting capacity.展开更多
In this paper, we study the fractal properties of the hyperbolic curve introduced by J. Belair ([Be]). We obtain some conditions of nowhere-differentiability of this kind of curves and its Bouligand dimension, and fin...In this paper, we study the fractal properties of the hyperbolic curve introduced by J. Belair ([Be]). We obtain some conditions of nowhere-differentiability of this kind of curves and its Bouligand dimension, and find a class of curves which are almost everywhere differertiable and have Bouligand dimensions being greater than one simultaneously.展开更多
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c...For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52088102)the Major Scientific and Technological Innovation Project of Shandong Province(Grant No.2019JZZY010820).
文摘This paper presents the design of a novel honeycomb structure with a double curved beam.The purpose of this design is to achieve vibration isolation for the main engine of an offshore platform and reduce impact loads.An analytical formula for the force-displacement relationship of the honeycomb single-cell structure is presented based on the modal superposition method.This formula provides a theoretical basis for predicting the compression performance of honeycomb structures.The effects of structural geometric parameters,series and parallel connection methods on the mechanical and energy absorption properties are investigated through mathematical modeling and experimental methods.Furthermore,the study focuses on the vibration isolation and impact resistance performance of honeycomb panels.The results show that the designed honeycomb structure has good mechanical and energy absorption performance,and its energy absorption effect is related to the geometric parameters and series and parallel connection methods of the structure.The isolation efficiency of the honeycomb with 4 rows and 3 columns reaches 38%.The initial isolation frequency of the isolator is 11.7 Hz.
基金the financial support for the research presented in this paper from National Natural Science Foundation of China(42201142,42067066,51778590)。
文摘Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in inducing loess landslides.This study focuses on three neighboring cities sequentially situated on the Loess Plateau along the direction of aeolian deposition of loess,namely Lanzhou,Dingxi,and Tianshui,which are densely populated and prone to landslide disasters.The variations in hydraulic properties,including water retention capacity and permeability,are investigated through Soil Water Characteristic Curve(SWCC)test and hydraulic conductivity test.The experimental findings revealed that Tianshui loess exhibited the highest water retention capacity,followed by Dingxi loess,while Lanzhou loess demonstrated the lowest water retention capacity.Contrastingly,the results for the saturated permeability coefficient were found to be the opposite:Tianshui loess showed the lowest permeability,whereas Lanzhou loess displayed the highest permeability.These results are supported and analyzed by scanning electron microscopy(SEM)observation.In addition,the water retention capacity is mathematically expressed using the van Genuchten model and extended to predict unsaturated hydraulic properties of loess.The experimental results exhibit a strong accordance with one another and align with the regional distribution patterns of disasters.
基金This work was performed at MMC(Materials Modelling Centre)of the University of Limpopo and the CHPC(Centre for High Performance Computing)with the support of the South African Research Chair Initiative of the Department of Science and Technology is greatly appreciatedThe study was funded by the NRF(National Research Foundation)with grant number 128934,and this funding is really appreciated.
文摘The universal cluster expansion technique was used in this study to determine the binary phase diagrams for the transition metal carbonate precursors MCO3(M:Mn,Ni,Co).The use of mixed cathode materials in lithium-ion batteries such as NMC(Ni,Mn and Co)formulations,is a strategic approach to optimize performance,enhance safety and address cost and environmental considerations in the rapidly evolving field of energy storage.This study focuses on the cost issue related to lithium ion batteries by investigating the manganese rich NMC since manganese is more abundant and cost-effective.We doped MnCO3 with nickel and doped MnCO3 with cobalt then ran cluster expansion calculations to generate binary phases.The binary phase diagrams generated indicated that doping MnCO3 with nickel favours the Mn-rich side,while doping MnCO3 with cobalt favours 50%Mn-rich and 50%Co-rich.We further extracted the most stable structures from both binary diagrams and determined their electronic,mechanical and vibrational stabilities using DFT(density functional theory)calculations within the LDA(local gradient approximation)with Hubbard parameter(U).The electronic properties revealed that both materials are semiconductors due to their narrow energy band gap obtained while the mechanical properties showed that structures are mechanically stable since their necessary conditions for trigonal and triclinic systems were satisfied.
文摘Potential energy curves govern the properties of materials. A critical analysis of the potential energy curve helps better understand the properties of the material. Potential energy curve and in turn the properties of any material depend on the composition, bonding, crystal structure, their mechanical processing and microstructure. The type, strength, and directionality of atomic bonding controls the structure and material properties viz., melting temperature, thermal expansion, elastic stiffness, electrical properties, ductility and toughness etc. This paper attempts to bring out the correlation between the potential energy curves with the properties of materials.
基金supported by the Shaanxi Scientific and Technological Project [(2006k12-G3(10)]
文摘Objective To explore the biological properties of keratinocytes from differently-aged healthy human beings. Methods Keratinocytes from fetus,teenager and middle-aged groups were separated and cultured. The population doubling time (PDT) and cell growth curve in different cells were compared,and the cell cycles were analyzed by flow cytometry. Results ① In primary culture of keratinocytes,the adherence time in middle-aged group was longer than that in fetus and teenager groups. However,all cell morphology showed no obvious differences. In subculture of keratinocytes,with donator’s age increasing,time of cell adherence prolonged,passage number decreased and differences in cell morphology were obvious. ② The average PDT of keratinocytes was shorter in fetus group than in teenager and middle-aged groups. But difference in cell growth curve between different passages was not observed. ③ Keratinocytes showed G2/M period in fetus group but G0/G1 period in teenager and middle-aged groups mainly. Conclusion As age increases,the biological properties of keratinocytes change obviously.
文摘Fibre bundle tensile curves can be used to characterise fibre processing properties and end-use performance directly and to predict single-fibre properties in theory. In this paper, the tensile behaviour of polyester fibre-bundles has been analysed in characteristic values and diagramming. The characteristic distributions which include the symmetry distribution on right part, SRBS′ (e), on left part, SLBS′(e) and the curve on base-line modification, MBS′ (e),based on the modulus distribution, BS′ (e), as well as the frequency density function of broken fibres, B′ (e), have been derived from the tail of bundle tensile curves. The theoretical and measured results show that the most important curves are MBS′ ( e ) and B′ ( e ) and can be used to estimate the breaking-extension distribution of single fibres. Especially for MBS′(e), the modulus distribution can accurately characterize single-fibre tensile properties and is no limitation as the calculation of B′(e) because the bundle specific stress Y(e) of no fibre breaking at extension e should be found at first.
基金National Natural Science Foundation of China(Nos.51677002 , 51937004)Civil Aircraft Special Research and Technology Research Project(MJ-2017-S-46)+1 种基金State Key Laboratory of Reliability and Intelligence of Electrical Equipment(No.EERIKF004)Hebei University of Technology and selected from the 1st International Symposium on Insulation and Discharge Computation for Power Equipment.
文摘In this report,two new contact structures of a vacuum interrupter with a sinusoidal curved surface are proposed to improve the capability by increasing the surface area.The experimental investigation of vacuum arc at intermediate frequency(360-800 Hz)was conducted and the results were compared with a butt contact with the same contact diameter(41 mm)and the same material.By analyzing the arc behavior,arc voltage characteristics,arc energy,current interrupting capacity,ablation of the anode contact and condensation of the arc products at a 3 mm gap,the differences in their vacuum arc characteristics were determined.The correlations of their arc energy with the amplitude and the frequency of the current were also achieved.Analysis suggests that the ruled curved contact has strong application potentiality because of its low arc energy,low arc voltage noise and arc voltage peak,light ablation on the surface of the anode contact and high interrupting capacity.
文摘In this paper, we study the fractal properties of the hyperbolic curve introduced by J. Belair ([Be]). We obtain some conditions of nowhere-differentiability of this kind of curves and its Bouligand dimension, and find a class of curves which are almost everywhere differertiable and have Bouligand dimensions being greater than one simultaneously.
基金Project(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of ChinaProject(2013M542138)supported by China Postdoctoral Science FoundationProjects(20130162110010,20130162120012)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.