To enhance the understanding of design characters, which have prominent influences during the fan blade out event, a simplified geometrical and dynamic analysis method was derived, and a typical 2-shaft high bypass ra...To enhance the understanding of design characters, which have prominent influences during the fan blade out event, a simplified geometrical and dynamic analysis method was derived, and a typical 2-shaft high bypass ratio turbofan engine was selected and modeled. Based on analytical deriving and engineering experience learned from the real engine failure case, three determinative impact actions were recognized from the fan blade out process. The transient trajectories of these impact actions were researched in analytical method, and then thickness of acoustic lining, quantity of fan blades and threshold load of structural fuse were analyzed as key design characters. 36 serialized fan blade out transient dynamic simulations were conducted by using the 2-shaft high bypass ratio turbofan engine model within different combinations of the three key design factors. The results from geometrical and dynamic analysis matched mainly well with the results from simulations. Characteristic phenomenon in simulation can be explained theoretically. Five conclusions can be summarized from these results. (1) If thickness fan acoustic lining was thinner, the deviation between simplified analytical calculation and simulation were not outstanding to predict Blade-Casing the first impact time and angular position. (2) An appropriate thickness of acoustic lining could make a lower impact stress of fan casing at the first impact. (3) Different thickness of acoustic linings leaded to two impact modes for blade 2, which were tip impact and root impact. (4) Different impact conditions between blade 1 and blade 2 caused remarkable speed components distinction of blade 1, and leaded to a wide range of transient trajectory of blade 1 during FBO event. (5) Thicker acoustic lining in this research can usually find the porper threshold loads setting, which can give a satisfactory outbound vibration. Two details were raised for further research, which were impact behavior of composite material fan blade and honeycomb and influences of wider FBO threshold load ranges in design cases with thinner acoustic lining.展开更多
Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistanc...Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistance before being put into service. The fan rotor blades of aeroengine are the components being easily impacted by birds. It is necessary to ensure that the fan rotor blades should have adequate resistance against the bird impact, to reduce the flying accidents caused by bird impacts. Using the contacting-impacting algorithm, the numerical simulation is carded out to simulate bird impact. A three-blade computational model is set up for the fan rotor blade having shrouds. The transient response curves of the points corresponding to measured points in experiments, displacements and equivalent stresses on the blades are obtained during the simulation. From the comparison of the transient response curves obtained from numerical simulation with that obtained from experiments, it can be found that the variations in measured points and the corresponding points of simulation are basically the same. The deforming process, the maximum displacements and the maximum equivalent stresses on blades are analyzed. The numerical simulation verifies and complements the experiment results.展开更多
The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blade...The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blades impacted by bird and the change of blade profile before and after the impact, the anti-bird impact performance of blades in the first fan rotor is verified. The basis of anti-foreign object damage design for the fan rotor blades of an aeroengine is provided.展开更多
Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In suc...Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In such a range the maximum static(gauge)pressure at the inlet changes from−2280 Pa to 382 Pa,and the minimum static pressure decreases from−3389 Pa to−8000 Pa.As for the axial intermediate flow surface,one low pressure zone is located at the junction of the suction surface and the hub,another is located at the suction surface close to the casing position.At the outlet boundary,the low pressure is negative and decreases from−1716 Pa to−4589 Pa.The sound pressure level of the inlet and outlet noise tends to increase monotonously by 11.6 dB and 7.3 dB,respectively.The acoustic energy of discrete noise is always higher than that of broadband noise regardless of whether the inlet or outlet flow surfaces are considered.The acoustic energy ratio of discrete noise at the inlet tends to increase from 0.78 to 0.93,while at the outlet it first decreases from 0.79 to 0.73 and then increases to 0.84.展开更多
In this paper,stress states under corresponding condition of an aero-engine fan blade using finite element stress-strain analysis for three work cycles in the 900 h load spectrum are obtained.Through the nominal stres...In this paper,stress states under corresponding condition of an aero-engine fan blade using finite element stress-strain analysis for three work cycles in the 900 h load spectrum are obtained.Through the nominal stress method,we calculated the fatigue notch factor and combined the material characteristics of TC6 to correct the material curve to the fan blades curve. Finally,the fatigue life of a fan blade was estimated using the linear cumulative damage rule and nonlinear cumulative damage theory.展开更多
Non-dimensional design concept for FOD tolerant fan blades is introduced based on the analyses of simplified impact models. The fan blades arc idealized as either beams or plates of elastic or rigid-plastic materials....Non-dimensional design concept for FOD tolerant fan blades is introduced based on the analyses of simplified impact models. The fan blades arc idealized as either beams or plates of elastic or rigid-plastic materials. The case of constant force impact as well as that of mass impact is analyzed. The centrifugal force effects are also considered in the beam models. The critical fracture conditions arc shown in simple npn-dimensional formulae or diagrams for each case.展开更多
For a certain type of transonic axial fan, the flow field of a fan rotor with splitter blade was computed by numerical simulation, and the shape of the rotor was modified. The effects of different circumferential dist...For a certain type of transonic axial fan, the flow field of a fan rotor with splitter blade was computed by numerical simulation, and the shape of the rotor was modified. The effects of different circumferential distributions concerning the splitter cascades upon the aerodynamic performance were investigated. The studies show that the optimum splitter cascade is not very close to the suction side of main blade. The load between the main blade and the splitter blade can be soundly distributed in terms of the adjustment of circumferential position of the splitter blade. The best aerodynamic performance can be successfully obtained according to the optimum shape of the expanding fluid channel reasonably formed by the splitter blade and the main blade.展开更多
In this paper, a bionic method was presented to improve the erosion resistance of blade of the centrifugal fan. A numerical investigation of the solid particle erosion on the standard and bionic configuration blade of...In this paper, a bionic method was presented to improve the erosion resistance of blade of the centrifugal fan. A numerical investigation of the solid particle erosion on the standard and bionic configuration blade of 4-72N_o10C centrifugal fan was presented. The numerical study employs computational fluid dynamics (CFD) software, based on a finite volume method, in which the discrete phase model was used to modele the solid particles flow, and the Eulerian conservation equation was adopt to simulate the continuous phase. Moreover, user-defined function was used to define wear equation. The various diameters of the particles were taken into account. The positions of collision of standard and bionic fan blades were discussed, and two kinds of centrifugal fan blade wear were compared. The results show that the particles from the incident source with different positions have different processes of turning and movement when enter into the impeller. The trajectories of flow in the fan channel are significantly different for the particles with different diameters. Bionic fan blade have lower erosion rate than the standard fan blade when the particle size is 20 μm. The anti-erosion mechanism of the bionic fan blade was discussed.展开更多
Residual stress during the machining process has always been a research hotspot,especially for aero-engine blades.The three-dimensional modeling and reconstructive laws of residual stress among various processes in th...Residual stress during the machining process has always been a research hotspot,especially for aero-engine blades.The three-dimensional modeling and reconstructive laws of residual stress among various processes in the machining process of the fan blade is studied in this paper.The fan blades of Ti-6Al-4V are targeted for milling,polishing,heat treatment,vibratory finishing,and shot peening.The surface and subsurface residual stress after each process is measured by the X-ray diffraction method.The distribution of the surface and subsurface residual stress is analyzed.The Rational Taylor surface function and cosine decay function are used to fit the characteristic function of the residual stress distribution,and the empirical formula with high fitting accuracy is obtained.The value and distribution of surface and subsurface residual stress vary greatly due to different processing techniques.The reconstructive change of the surface and subsurface residual stress of the blade in each process intuitively shows the change of the residual stress between the processes,which has a high reference significance for the research on the residual stress of the blade processing and the optimization of the entire blade process.展开更多
Several structural design parameters for the description of the geometric features of a hollow fan blade were determined.A structural design optimization model of a hollow fan blade which based on the strength constra...Several structural design parameters for the description of the geometric features of a hollow fan blade were determined.A structural design optimization model of a hollow fan blade which based on the strength constraint and minimum mass was established based on the finite element method through these parameters.Then,the sequential quadratic programming algorithm was employed to search the optimal solutions.Several groups of value for initial design variables were chosen,for the purpose of not only finding much more local optimal results but also analyzing which discipline that the variables according to could be benefit for the convergence and robustness.Response surface method and Monte Carlo simulations were used to analyze whether the objective function and constraint function are sensitive to the variation of variables or not.Then the robust results could be found among a group of different local optimal solutions.展开更多
A 3D digital model of a small Unmanned Aerial Vehicle(UAV)is obtained by using the method of scanning reverse modeling and joint mapping.A numerical simulation of a small UAV strikes on rotary engine blades,presented ...A 3D digital model of a small Unmanned Aerial Vehicle(UAV)is obtained by using the method of scanning reverse modeling and joint mapping.A numerical simulation of a small UAV strikes on rotary engine blades,presented in this paper,was performed with a Transient Nonlinear Finite Element code PAM-CRASH software.A test of motor strike on plate was developed and the dynamic response of the plate were obtained to validate the numerical simulation method of a UAV strike on blades.Based on this,dynamic damage response caused by UAV on the engine blades were studied.It is indicated that the impact process between the UAV and a single blade can be divided into two typical stages:cutting and impact.Cutting mainly leads to the failure of the leading edge material,and impact mainly leads to the plastic deformation of the blade.At the same time,it is compared with the damage impacted by bird with the same mass.For the same mass of bird and UAV,the damage caused by UAV striking fan blade is more serious,and 1.345 kg UAV striking fan blade of typical civil aviation engine is enough to cause damage to flight safety.展开更多
In recent years, the hollow fan blades have been widely used to meet the demand for light weight and good performance of the aero-engine. However, the relationship between the hollow structure and the aeroelastic stab...In recent years, the hollow fan blades have been widely used to meet the demand for light weight and good performance of the aero-engine. However, the relationship between the hollow structure and the aeroelastic stability has not been studied yet in the open literature. In this paper,it has been investigated for an H-shaped hollow fan blade. Before studying the flutter behavior, the methods of parametric modeling and auto-generation of Finite Element Model(FEM) are presented. The influence of the feature parameters on the vibration frequency and mode shape(as the input of flutter calculation) of the first three modes are analyzed by the Orthogonal Experimental Design(OED) method. The results show that the parameters have a more remarkable impact on the first torsional mode and thus it is concerned in the flutter sensitivity analysis. Compared with the solid blade, the minimum aerodynamic damping of the hollow blade decreases, indicating that the hollow structure makes the aeroelastic stability worse. For the parameters describing the hollow section, the rib number N has the greatest influence on the minimum aerodynamic damping, followed by the wall thickness W5. For the parameters in the height of hollow segment, the aerodynamic damping increases with the increase of parameters M1 and M2. This means that reducing the height of the hollow segment is helpful to improve the aeroelastic stability. Compared with the impact of parameters in hollow section, the variation of aerodynamic damping caused by the height of the hollow segment is small.展开更多
Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe...Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents.Although various anti-icing and deicing systems have been developed,such accidents still occur.Therefore,it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine.However,flight tests for ice accretion are very expensive,and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur.Therefore,it is expected that computational fluid dynamics(CFD),which can estimate ice accretion in various climate conditions,will be a useful way to predict and understand the ice accretion phenomenon.On the other hand,although the icing caused by super-cooled large droplets(SLD) is very dangerous,the numerical method has not been established yet.This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature.In the present study,we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing,and the code is applied to a fan rotor blade.The numerical results with and without the SLD icing model are compared.Through this study,the influence of the SLD icing model is numerically clarified.展开更多
Abstract:With the application background of 16 inch industrial fan blades' scribing process, a simple and prac tical 2DOF parallel plane scribing device is proposed to replace the traditional manual scribing. The di...Abstract:With the application background of 16 inch industrial fan blades' scribing process, a simple and prac tical 2DOF parallel plane scribing device is proposed to replace the traditional manual scribing. The direct and inverse kinematics solutions, workspace and singular configuration of the mechanism are analyzed and solved. Some contour curve equations are fitted based on the data points which are measured by a three coordinate meas uring machine. According to the blade's contour curve, each input link's motion characteristic is obtained by u sing MATLAB, which provides a new way to realize blades' automatic scribing process technology.展开更多
Tamarisk, a plant that thrives in arid and semi-arid regions, has adapted to blustery conditions by evolving extremely ef- fective and robust anti-erosion surface patterns. However, the details of these unique propert...Tamarisk, a plant that thrives in arid and semi-arid regions, has adapted to blustery conditions by evolving extremely ef- fective and robust anti-erosion surface patterns. However, the details of these unique properties and their structural basis are still unexplored. In this paper, we demonstrate that the tamarisk surface only suffers minor scratches under wind-sand mixture erosion. The results show that the anti-erosion property of bionic sample, inspired by tamarisk surface with different surface morphologies, can be attributed to the flow rotating in the grooves that reduces the particle impact speed. Furthermore, the simulation and experiment on the erosion wear behavior of the bionic samples and bionic centrifugal fan blades show that the bionic surface with V-type groove exhibits the best erosion resistance. The bionic surface on centrifugal fan blades with opti- mum parameters can effectively improve anti-erosion property by 28.97%. This paper show more opportunities for bionic application in improving the anti-erosion performance of moving parts that work under dirt and sand particle environment, such as helicopter rotor blades, airplane propellers, rocket motor nozzles, and pipes that regularly wear out from erosion.展开更多
文摘To enhance the understanding of design characters, which have prominent influences during the fan blade out event, a simplified geometrical and dynamic analysis method was derived, and a typical 2-shaft high bypass ratio turbofan engine was selected and modeled. Based on analytical deriving and engineering experience learned from the real engine failure case, three determinative impact actions were recognized from the fan blade out process. The transient trajectories of these impact actions were researched in analytical method, and then thickness of acoustic lining, quantity of fan blades and threshold load of structural fuse were analyzed as key design characters. 36 serialized fan blade out transient dynamic simulations were conducted by using the 2-shaft high bypass ratio turbofan engine model within different combinations of the three key design factors. The results from geometrical and dynamic analysis matched mainly well with the results from simulations. Characteristic phenomenon in simulation can be explained theoretically. Five conclusions can be summarized from these results. (1) If thickness fan acoustic lining was thinner, the deviation between simplified analytical calculation and simulation were not outstanding to predict Blade-Casing the first impact time and angular position. (2) An appropriate thickness of acoustic lining could make a lower impact stress of fan casing at the first impact. (3) Different thickness of acoustic linings leaded to two impact modes for blade 2, which were tip impact and root impact. (4) Different impact conditions between blade 1 and blade 2 caused remarkable speed components distinction of blade 1, and leaded to a wide range of transient trajectory of blade 1 during FBO event. (5) Thicker acoustic lining in this research can usually find the porper threshold loads setting, which can give a satisfactory outbound vibration. Two details were raised for further research, which were impact behavior of composite material fan blade and honeycomb and influences of wider FBO threshold load ranges in design cases with thinner acoustic lining.
文摘Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistance before being put into service. The fan rotor blades of aeroengine are the components being easily impacted by birds. It is necessary to ensure that the fan rotor blades should have adequate resistance against the bird impact, to reduce the flying accidents caused by bird impacts. Using the contacting-impacting algorithm, the numerical simulation is carded out to simulate bird impact. A three-blade computational model is set up for the fan rotor blade having shrouds. The transient response curves of the points corresponding to measured points in experiments, displacements and equivalent stresses on the blades are obtained during the simulation. From the comparison of the transient response curves obtained from numerical simulation with that obtained from experiments, it can be found that the variations in measured points and the corresponding points of simulation are basically the same. The deforming process, the maximum displacements and the maximum equivalent stresses on blades are analyzed. The numerical simulation verifies and complements the experiment results.
文摘The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blades impacted by bird and the change of blade profile before and after the impact, the anti-bird impact performance of blades in the first fan rotor is verified. The basis of anti-foreign object damage design for the fan rotor blades of an aeroengine is provided.
基金supported by Key Research and Development Project of Shandong Province[2019GSF109084]Young Scholars Program of Shandong University[2018WLJH73].
文摘Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In such a range the maximum static(gauge)pressure at the inlet changes from−2280 Pa to 382 Pa,and the minimum static pressure decreases from−3389 Pa to−8000 Pa.As for the axial intermediate flow surface,one low pressure zone is located at the junction of the suction surface and the hub,another is located at the suction surface close to the casing position.At the outlet boundary,the low pressure is negative and decreases from−1716 Pa to−4589 Pa.The sound pressure level of the inlet and outlet noise tends to increase monotonously by 11.6 dB and 7.3 dB,respectively.The acoustic energy of discrete noise is always higher than that of broadband noise regardless of whether the inlet or outlet flow surfaces are considered.The acoustic energy ratio of discrete noise at the inlet tends to increase from 0.78 to 0.93,while at the outlet it first decreases from 0.79 to 0.73 and then increases to 0.84.
文摘In this paper,stress states under corresponding condition of an aero-engine fan blade using finite element stress-strain analysis for three work cycles in the 900 h load spectrum are obtained.Through the nominal stress method,we calculated the fatigue notch factor and combined the material characteristics of TC6 to correct the material curve to the fan blades curve. Finally,the fatigue life of a fan blade was estimated using the linear cumulative damage rule and nonlinear cumulative damage theory.
文摘Non-dimensional design concept for FOD tolerant fan blades is introduced based on the analyses of simplified impact models. The fan blades arc idealized as either beams or plates of elastic or rigid-plastic materials. The case of constant force impact as well as that of mass impact is analyzed. The centrifugal force effects are also considered in the beam models. The critical fracture conditions arc shown in simple npn-dimensional formulae or diagrams for each case.
文摘For a certain type of transonic axial fan, the flow field of a fan rotor with splitter blade was computed by numerical simulation, and the shape of the rotor was modified. The effects of different circumferential distributions concerning the splitter cascades upon the aerodynamic performance were investigated. The studies show that the optimum splitter cascade is not very close to the suction side of main blade. The load between the main blade and the splitter blade can be soundly distributed in terms of the adjustment of circumferential position of the splitter blade. The best aerodynamic performance can be successfully obtained according to the optimum shape of the expanding fluid channel reasonably formed by the splitter blade and the main blade.
基金supported by National Natural Science Foundation of China (Nos. 51175220 and 51205161)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20100061110023)+3 种基金the Projects of Cooperation and Innovation to National Potential Oil and Gas for Production and Research (No. OSR-04-04)China Postdoctoral Science Foundation (No. 2012M511345)Ten Outstanding Youth Fund Project of Jilin University(No. 200905016)Basic Scientific Research Expenses of Project of Jilin University (No. 450060481176)
文摘In this paper, a bionic method was presented to improve the erosion resistance of blade of the centrifugal fan. A numerical investigation of the solid particle erosion on the standard and bionic configuration blade of 4-72N_o10C centrifugal fan was presented. The numerical study employs computational fluid dynamics (CFD) software, based on a finite volume method, in which the discrete phase model was used to modele the solid particles flow, and the Eulerian conservation equation was adopt to simulate the continuous phase. Moreover, user-defined function was used to define wear equation. The various diameters of the particles were taken into account. The positions of collision of standard and bionic fan blades were discussed, and two kinds of centrifugal fan blade wear were compared. The results show that the particles from the incident source with different positions have different processes of turning and movement when enter into the impeller. The trajectories of flow in the fan channel are significantly different for the particles with different diameters. Bionic fan blade have lower erosion rate than the standard fan blade when the particle size is 20 μm. The anti-erosion mechanism of the bionic fan blade was discussed.
基金This work was funded by the National Natural Science Foundation of China(Grant Nos.51875472,91860206,and 51905440)the National Science and Technology Major Project(Grant No.2017-VII-0001-0094)+1 种基金the National Key Research and Development Plan in Shaanxi Province of China(Grant No.2019ZDLGY02-03)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2020JQ-186).
文摘Residual stress during the machining process has always been a research hotspot,especially for aero-engine blades.The three-dimensional modeling and reconstructive laws of residual stress among various processes in the machining process of the fan blade is studied in this paper.The fan blades of Ti-6Al-4V are targeted for milling,polishing,heat treatment,vibratory finishing,and shot peening.The surface and subsurface residual stress after each process is measured by the X-ray diffraction method.The distribution of the surface and subsurface residual stress is analyzed.The Rational Taylor surface function and cosine decay function are used to fit the characteristic function of the residual stress distribution,and the empirical formula with high fitting accuracy is obtained.The value and distribution of surface and subsurface residual stress vary greatly due to different processing techniques.The reconstructive change of the surface and subsurface residual stress of the blade in each process intuitively shows the change of the residual stress between the processes,which has a high reference significance for the research on the residual stress of the blade processing and the optimization of the entire blade process.
文摘Several structural design parameters for the description of the geometric features of a hollow fan blade were determined.A structural design optimization model of a hollow fan blade which based on the strength constraint and minimum mass was established based on the finite element method through these parameters.Then,the sequential quadratic programming algorithm was employed to search the optimal solutions.Several groups of value for initial design variables were chosen,for the purpose of not only finding much more local optimal results but also analyzing which discipline that the variables according to could be benefit for the convergence and robustness.Response surface method and Monte Carlo simulations were used to analyze whether the objective function and constraint function are sensitive to the variation of variables or not.Then the robust results could be found among a group of different local optimal solutions.
基金supported by the Civil Aviation Security Capacity Building Fundthe Civil Aircraft 13th Five Year Pre Research Project(No.MJ-2018-F-18)。
文摘A 3D digital model of a small Unmanned Aerial Vehicle(UAV)is obtained by using the method of scanning reverse modeling and joint mapping.A numerical simulation of a small UAV strikes on rotary engine blades,presented in this paper,was performed with a Transient Nonlinear Finite Element code PAM-CRASH software.A test of motor strike on plate was developed and the dynamic response of the plate were obtained to validate the numerical simulation method of a UAV strike on blades.Based on this,dynamic damage response caused by UAV on the engine blades were studied.It is indicated that the impact process between the UAV and a single blade can be divided into two typical stages:cutting and impact.Cutting mainly leads to the failure of the leading edge material,and impact mainly leads to the plastic deformation of the blade.At the same time,it is compared with the damage impacted by bird with the same mass.For the same mass of bird and UAV,the damage caused by UAV striking fan blade is more serious,and 1.345 kg UAV striking fan blade of typical civil aviation engine is enough to cause damage to flight safety.
基金co-supported by the National Science and Technology Major Project,China(No.2017-Ⅳ-0002-0039)the National Natural Science Foundation of China(No.51475022)。
文摘In recent years, the hollow fan blades have been widely used to meet the demand for light weight and good performance of the aero-engine. However, the relationship between the hollow structure and the aeroelastic stability has not been studied yet in the open literature. In this paper,it has been investigated for an H-shaped hollow fan blade. Before studying the flutter behavior, the methods of parametric modeling and auto-generation of Finite Element Model(FEM) are presented. The influence of the feature parameters on the vibration frequency and mode shape(as the input of flutter calculation) of the first three modes are analyzed by the Orthogonal Experimental Design(OED) method. The results show that the parameters have a more remarkable impact on the first torsional mode and thus it is concerned in the flutter sensitivity analysis. Compared with the solid blade, the minimum aerodynamic damping of the hollow blade decreases, indicating that the hollow structure makes the aeroelastic stability worse. For the parameters describing the hollow section, the rib number N has the greatest influence on the minimum aerodynamic damping, followed by the wall thickness W5. For the parameters in the height of hollow segment, the aerodynamic damping increases with the increase of parameters M1 and M2. This means that reducing the height of the hollow segment is helpful to improve the aeroelastic stability. Compared with the impact of parameters in hollow section, the variation of aerodynamic damping caused by the height of the hollow segment is small.
文摘Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents.Although various anti-icing and deicing systems have been developed,such accidents still occur.Therefore,it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine.However,flight tests for ice accretion are very expensive,and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur.Therefore,it is expected that computational fluid dynamics(CFD),which can estimate ice accretion in various climate conditions,will be a useful way to predict and understand the ice accretion phenomenon.On the other hand,although the icing caused by super-cooled large droplets(SLD) is very dangerous,the numerical method has not been established yet.This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature.In the present study,we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing,and the code is applied to a fan rotor blade.The numerical results with and without the SLD icing model are compared.Through this study,the influence of the SLD icing model is numerically clarified.
文摘Abstract:With the application background of 16 inch industrial fan blades' scribing process, a simple and prac tical 2DOF parallel plane scribing device is proposed to replace the traditional manual scribing. The direct and inverse kinematics solutions, workspace and singular configuration of the mechanism are analyzed and solved. Some contour curve equations are fitted based on the data points which are measured by a three coordinate meas uring machine. According to the blade's contour curve, each input link's motion characteristic is obtained by u sing MATLAB, which provides a new way to realize blades' automatic scribing process technology.
基金This work was supported by the Natural Science Foundation of China (Nos. 51175220, 51205161, 51290292), the Specialized Research Fund for the Doctoral Program of Higher Education (Nos. 20100061110023, 20120061120051), the China Post- doctoral Science Foundation on the 51 th Grant Program (2012M511345), the Projects of Cooperation and Inno- vation to National Potential Oil and Gas for Production and Research (No. OSR-04-04).
文摘Tamarisk, a plant that thrives in arid and semi-arid regions, has adapted to blustery conditions by evolving extremely ef- fective and robust anti-erosion surface patterns. However, the details of these unique properties and their structural basis are still unexplored. In this paper, we demonstrate that the tamarisk surface only suffers minor scratches under wind-sand mixture erosion. The results show that the anti-erosion property of bionic sample, inspired by tamarisk surface with different surface morphologies, can be attributed to the flow rotating in the grooves that reduces the particle impact speed. Furthermore, the simulation and experiment on the erosion wear behavior of the bionic samples and bionic centrifugal fan blades show that the bionic surface with V-type groove exhibits the best erosion resistance. The bionic surface on centrifugal fan blades with opti- mum parameters can effectively improve anti-erosion property by 28.97%. This paper show more opportunities for bionic application in improving the anti-erosion performance of moving parts that work under dirt and sand particle environment, such as helicopter rotor blades, airplane propellers, rocket motor nozzles, and pipes that regularly wear out from erosion.