Based on investigations into the flow field of ducted fan aircrafts,structural parameters of duct are quantified.A three-dimensional model is established for numerical simulation,and adaptive Cartesian grid is used to...Based on investigations into the flow field of ducted fan aircrafts,structural parameters of duct are quantified.A three-dimensional model is established for numerical simulation,and adaptive Cartesian grid is used to mesh the model in order to improve calculation speed and solution accuracy.Three-dimensional Navier-Stokes equations are brought in to analyze different duct styles.Generalization of simulation results leads to several conclusions in duct aerodynamics to help design ducted fan aircrafts.展开更多
A novel coaxial ducted fan structure aircraft is proposed to enable the aircraft near vertical walls at high altitudes.The state space equation of the system can be obtained by correlation deduction and identification...A novel coaxial ducted fan structure aircraft is proposed to enable the aircraft near vertical walls at high altitudes.The state space equation of the system can be obtained by correlation deduction and identification of the whole prototype model.Based on the duct test bench experiment and computational fluid dynamics(CFD)simulation analysis,the expressions between the different distances dWE from the rotor center of the prototype to the wall and the thrust,reaction torque,and tilting moment of the system under hovering conditions are obtained.The influence of the wall effect of the prototype is incorporated into the system model to analyze the relationship between distance dWE and the comprehensive controllability of the system.The results show that the system comprehensive controllability vector of other channels changes little with the decrease of the distance dWE,and only the controllability vector of the rolling channel increases significantly.At the same time,the tilting moment also increases significantly,which strengthens the tendency of the prototype to tilt towards the wall.展开更多
This article investigates the improvement of dynamics stability of the ducted fan unmanned aerial vehicles(UAVs) by optimizing its mechanical-structure parameters. The instability phenomenon of the ducted fan unmanned...This article investigates the improvement of dynamics stability of the ducted fan unmanned aerial vehicles(UAVs) by optimizing its mechanical-structure parameters. The instability phenomenon of the ducted fan unmanned aerial vehicles takes place frequently that easily leads to vibration and even out of control, due to complicated airflow. The dynamics equations mirror its dynamics characteristics, which is primarily influenced by the mechanical-structure parameters of the whole system. Based on this, the optimization of mechanical-structure parameters will improve the dynamics stability of the whole system. Therefore, this paper uses the concept of Lyapunov exponents to build the quantification relationship between system's mechanical-structure parameters and its motion stability to enhance its stability. The simulation experimental results indicate that compared with the direct Lyapunov method, the most important advantage of the proposed method is its constructivity, so it is an effective tool for analysis of the motion stability of other non-linear systems such as robots.展开更多
The UAVs (unmanned aerial vehicles) exist in various sizes. One of the most interesting niches concerns the UAVs of moderate size (〈 1 m), also called MAVs (micro air vehicles). An aerodynamic study of the ULB ...The UAVs (unmanned aerial vehicles) exist in various sizes. One of the most interesting niches concerns the UAVs of moderate size (〈 1 m), also called MAVs (micro air vehicles). An aerodynamic study of the ULB (Universite Libre de Bruxelles) developed a ducted rotor MAV using the results of full-scale wind tunnel tests that allowed the determination of the platform speed envelope, the power requirements and the endurance characteristics for ISA sea level conditions. Although the ULB MAV appears similar to other ducted-rotor concepts, it fundamentally differs from them as it uses the downwash of a single rotor to compensate the electric motor main rotor torque and to achieve full control around the roll, pitch and yaw axes. This paper explains in detail the components layout of the MAV and the aerodynamic characteristics of the anti-torque blades.展开更多
Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings signific...Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings significant aerodynamic interference to the ducted fan,which seriously threatens flight stability and safety.In this work,the numerical simulation with the Unsteady Reynolds Averaged Navier-Stokes(URANS)method and the sliding mesh technique is performed to evaluate the steady wind effect.The results show that the wind will lead to serious unsteady effects in the flow field,and the thrust fluctuates at the blade passing frequency of 200 Hz.As the wind speed increases,the rotor thrust increases,the duct thrust decreases,and the total thrust changes little.Flow instability may occur when the wind speed exceeds 8 m/s.As the angle of low-speed wind increases,the rotor thrust changes little,the duct thrust increases,and the total thrust increases.In addition,we figure out that cases with the same crosswind ratio are similar in results,and increasing the rotating speed or fan radius is beneficial to performance improvement in wind.The findings are essential to the ducted fan design and UAV flight control design for stable and safe operations in wind conditions.展开更多
This paper is concerned with the robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft under system uncertainty, mismatched disturbance, and actuator saturation.For the proposed aircraft, comp...This paper is concerned with the robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft under system uncertainty, mismatched disturbance, and actuator saturation.For the proposed aircraft, comprehensive controllability analysis is performed to evaluate the controllability of each state as well as the margin to reject mismatched disturbance without any knowledge of the controller. Mismatched disturbance attenuation is ensured through a structured Hinfinity controller tuned by a non-smooth optimization algorithm. Embedded with the H-infinity controller, an adaptive control law is proposed in order to mitigate matched system uncertainty and actuator fault. Input saturation is also considered by the modified reference model. Numerical simulation of the novel ducted fan aircraft is provided to illustrate the effectiveness of the proposed method. The simulation results reveal that the proposed adaptive controller achieves better transient response and more robust performance than classic Model Reference Adaptive Control(MRAC) method, even with serious actuator saturation.展开更多
Ducted fans have been widely used in VTOL aircraft due to the high propulsion efficiency and safety.The efficiency and stability of ducted fans deteriorate in some flight conditions such as hovering in crosswinds or g...Ducted fans have been widely used in VTOL aircraft due to the high propulsion efficiency and safety.The efficiency and stability of ducted fans deteriorate in some flight conditions such as hovering in crosswinds or ground effect.It is necessary to optimize the ducted fan’s structures or apply flow control methods for better adaptions to the typical conditions.This paper presents a detailed review on the ducted fan technology for VTOL applications,especially the methods for improving its efficiency and stability.We first simplified the classification categories based on boundary conditions instead of flight conditions,since the new classification method covers more situations and is easier to distinguish flow field characteristics.The flow characteristics,thrust properties and the optimal structures under different boundary conditions were summarized and discussed.Finally,new configurations and flow control methods for increasing the efficiency and stability were introduced.The newly proposed integration design between the ducted fan and the motor was emphasized for increasing the power density of the ducted fans.This review would be helpful to improve our understanding of the relationship between the structures,flow characteristics and thrust properties of ducted fans under different flight conditions,and inspires scientists to design high-efficiency and high-stability propulsion systems with ducted fans.展开更多
Ducted fans are widely used in various applications of Unmanned Aerial Vehicles(UAVs)due to the high efficiency,low noise and high safety.The unsteady characteristics of ducted fans flying near the ground are signific...Ducted fans are widely used in various applications of Unmanned Aerial Vehicles(UAVs)due to the high efficiency,low noise and high safety.The unsteady characteristics of ducted fans flying near the ground are significant,which may bring stability problems.In this paper,the sliding mesh technology is applied and the Unsteady Reynolds Averaged Navier-Stokes(URANS)method is adopted to evaluate the influence of ground on the aerodynamic performance of ducted fans.The time-averaged results show that the ground leads to the decrease of duct thrust,the increase of rotor thrust and the decrease of total thrust.The transient results show that there exist small-scale stall cells with circumferential movements in ground effect.The stall cells start to appear at the blade root when the height is 0.8 rotor radius distance,and arise at both the blade root and tip when the height drops to 0.2.It is found that the unsteady cells rotate between blade passages with an approximate relative speed of 30%-80%of the fan speed,and lead to thrust fluctuations up to 37%of the total thrust.The results are essential to the flight control design of the ducted fan flying vehicle,to ensure its stability in ground effect.展开更多
Inlet distortion is one of the main factors for the degradation of aerodynamic performance and stability margin of the compressor in practical operation. Due to the change of the inlet shape and the large amount of in...Inlet distortion is one of the main factors for the degradation of aerodynamic performance and stability margin of the compressor in practical operation. Due to the change of the inlet shape and the large amount of inhalation of the body Boundary Layer, the ducted thrust fan of the Boundary Layer Ingestion (BLI) propulsion system inevitably works in the intake distortion condition. In this paper, the ducted thrust fan in a BLI propulsion system is taken as the research object. The influence of radial and circumferential total pressure distortion on the inlet section of the ducted thrust fan caused by boundary layer suction and inlet shape is studied by steady single channel and fullloop numerical simulation. The influence law of distortion intensity and distortion range of the two types of distortion patterns of the distortion map is analyzed emphatically. The results show that :(1) the greater the range and intensity of the radial total pressure distortion are, the more affected the performance of the ducted thrust fan is;(2) The aero-dynamic performance decline amplitude of the ducted thrust fan increases with the increase of the intensity of the circumferential total pressure distortion;The transmission law of the circumferential total pressure distortion intensity along the inlet and outlet of the fan is almost the same. Different working conditions have influence on the attenuation degree of the circumferential total pressure distortion in the ducted thrust fan, and the attenuation range of the circumferential total pressure distortion in the design working condition is the largest.展开更多
文摘Based on investigations into the flow field of ducted fan aircrafts,structural parameters of duct are quantified.A three-dimensional model is established for numerical simulation,and adaptive Cartesian grid is used to mesh the model in order to improve calculation speed and solution accuracy.Three-dimensional Navier-Stokes equations are brought in to analyze different duct styles.Generalization of simulation results leads to several conclusions in duct aerodynamics to help design ducted fan aircrafts.
基金Supported by the National Key Research and Development Project(2020YFC1512500)。
文摘A novel coaxial ducted fan structure aircraft is proposed to enable the aircraft near vertical walls at high altitudes.The state space equation of the system can be obtained by correlation deduction and identification of the whole prototype model.Based on the duct test bench experiment and computational fluid dynamics(CFD)simulation analysis,the expressions between the different distances dWE from the rotor center of the prototype to the wall and the thrust,reaction torque,and tilting moment of the system under hovering conditions are obtained.The influence of the wall effect of the prototype is incorporated into the system model to analyze the relationship between distance dWE and the comprehensive controllability of the system.The results show that the system comprehensive controllability vector of other channels changes little with the decrease of the distance dWE,and only the controllability vector of the rolling channel increases significantly.At the same time,the tilting moment also increases significantly,which strengthens the tendency of the prototype to tilt towards the wall.
基金Supported by the National Natural Science Foundation of China(No.51575283)Central Public Welfare Basic Scientific Research Institute Special Funds(No.Y919008)
文摘This article investigates the improvement of dynamics stability of the ducted fan unmanned aerial vehicles(UAVs) by optimizing its mechanical-structure parameters. The instability phenomenon of the ducted fan unmanned aerial vehicles takes place frequently that easily leads to vibration and even out of control, due to complicated airflow. The dynamics equations mirror its dynamics characteristics, which is primarily influenced by the mechanical-structure parameters of the whole system. Based on this, the optimization of mechanical-structure parameters will improve the dynamics stability of the whole system. Therefore, this paper uses the concept of Lyapunov exponents to build the quantification relationship between system's mechanical-structure parameters and its motion stability to enhance its stability. The simulation experimental results indicate that compared with the direct Lyapunov method, the most important advantage of the proposed method is its constructivity, so it is an effective tool for analysis of the motion stability of other non-linear systems such as robots.
文摘The UAVs (unmanned aerial vehicles) exist in various sizes. One of the most interesting niches concerns the UAVs of moderate size (〈 1 m), also called MAVs (micro air vehicles). An aerodynamic study of the ULB (Universite Libre de Bruxelles) developed a ducted rotor MAV using the results of full-scale wind tunnel tests that allowed the determination of the platform speed envelope, the power requirements and the endurance characteristics for ISA sea level conditions. Although the ULB MAV appears similar to other ducted-rotor concepts, it fundamentally differs from them as it uses the downwash of a single rotor to compensate the electric motor main rotor torque and to achieve full control around the roll, pitch and yaw axes. This paper explains in detail the components layout of the MAV and the aerodynamic characteristics of the anti-torque blades.
基金This study was co-supported by the National Key Research and Development Program of China(No.2020YFC1512500),The Advanced Aviation Power Innovation institution,The Aero Engine Academy of China,and Tsinghua University Initiative Scientific Research Program,China.
文摘Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings significant aerodynamic interference to the ducted fan,which seriously threatens flight stability and safety.In this work,the numerical simulation with the Unsteady Reynolds Averaged Navier-Stokes(URANS)method and the sliding mesh technique is performed to evaluate the steady wind effect.The results show that the wind will lead to serious unsteady effects in the flow field,and the thrust fluctuates at the blade passing frequency of 200 Hz.As the wind speed increases,the rotor thrust increases,the duct thrust decreases,and the total thrust changes little.Flow instability may occur when the wind speed exceeds 8 m/s.As the angle of low-speed wind increases,the rotor thrust changes little,the duct thrust increases,and the total thrust increases.In addition,we figure out that cases with the same crosswind ratio are similar in results,and increasing the rotating speed or fan radius is beneficial to performance improvement in wind.The findings are essential to the ducted fan design and UAV flight control design for stable and safe operations in wind conditions.
文摘This paper is concerned with the robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft under system uncertainty, mismatched disturbance, and actuator saturation.For the proposed aircraft, comprehensive controllability analysis is performed to evaluate the controllability of each state as well as the margin to reject mismatched disturbance without any knowledge of the controller. Mismatched disturbance attenuation is ensured through a structured Hinfinity controller tuned by a non-smooth optimization algorithm. Embedded with the H-infinity controller, an adaptive control law is proposed in order to mitigate matched system uncertainty and actuator fault. Input saturation is also considered by the modified reference model. Numerical simulation of the novel ducted fan aircraft is provided to illustrate the effectiveness of the proposed method. The simulation results reveal that the proposed adaptive controller achieves better transient response and more robust performance than classic Model Reference Adaptive Control(MRAC) method, even with serious actuator saturation.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFC1512500)the Advanced Aviation Power Innovation Institution,the Aero Engine Academy of ChinaTsinghua University Initiative Scientific Research Program。
文摘Ducted fans have been widely used in VTOL aircraft due to the high propulsion efficiency and safety.The efficiency and stability of ducted fans deteriorate in some flight conditions such as hovering in crosswinds or ground effect.It is necessary to optimize the ducted fan’s structures or apply flow control methods for better adaptions to the typical conditions.This paper presents a detailed review on the ducted fan technology for VTOL applications,especially the methods for improving its efficiency and stability.We first simplified the classification categories based on boundary conditions instead of flight conditions,since the new classification method covers more situations and is easier to distinguish flow field characteristics.The flow characteristics,thrust properties and the optimal structures under different boundary conditions were summarized and discussed.Finally,new configurations and flow control methods for increasing the efficiency and stability were introduced.The newly proposed integration design between the ducted fan and the motor was emphasized for increasing the power density of the ducted fans.This review would be helpful to improve our understanding of the relationship between the structures,flow characteristics and thrust properties of ducted fans under different flight conditions,and inspires scientists to design high-efficiency and high-stability propulsion systems with ducted fans.
基金co-supported by the National Key Research and Development Program of China(No.2020YFC1512500)The Advanced Aviation Power Innovation institution,The Aero Engine Academy of ChinaTsinghua University Initiative Scientific Research Program.
文摘Ducted fans are widely used in various applications of Unmanned Aerial Vehicles(UAVs)due to the high efficiency,low noise and high safety.The unsteady characteristics of ducted fans flying near the ground are significant,which may bring stability problems.In this paper,the sliding mesh technology is applied and the Unsteady Reynolds Averaged Navier-Stokes(URANS)method is adopted to evaluate the influence of ground on the aerodynamic performance of ducted fans.The time-averaged results show that the ground leads to the decrease of duct thrust,the increase of rotor thrust and the decrease of total thrust.The transient results show that there exist small-scale stall cells with circumferential movements in ground effect.The stall cells start to appear at the blade root when the height is 0.8 rotor radius distance,and arise at both the blade root and tip when the height drops to 0.2.It is found that the unsteady cells rotate between blade passages with an approximate relative speed of 30%-80%of the fan speed,and lead to thrust fluctuations up to 37%of the total thrust.The results are essential to the flight control design of the ducted fan flying vehicle,to ensure its stability in ground effect.
基金National Natural Science Foundation of China(No.51706183,No.51790512)。
文摘Inlet distortion is one of the main factors for the degradation of aerodynamic performance and stability margin of the compressor in practical operation. Due to the change of the inlet shape and the large amount of inhalation of the body Boundary Layer, the ducted thrust fan of the Boundary Layer Ingestion (BLI) propulsion system inevitably works in the intake distortion condition. In this paper, the ducted thrust fan in a BLI propulsion system is taken as the research object. The influence of radial and circumferential total pressure distortion on the inlet section of the ducted thrust fan caused by boundary layer suction and inlet shape is studied by steady single channel and fullloop numerical simulation. The influence law of distortion intensity and distortion range of the two types of distortion patterns of the distortion map is analyzed emphatically. The results show that :(1) the greater the range and intensity of the radial total pressure distortion are, the more affected the performance of the ducted thrust fan is;(2) The aero-dynamic performance decline amplitude of the ducted thrust fan increases with the increase of the intensity of the circumferential total pressure distortion;The transmission law of the circumferential total pressure distortion intensity along the inlet and outlet of the fan is almost the same. Different working conditions have influence on the attenuation degree of the circumferential total pressure distortion in the ducted thrust fan, and the attenuation range of the circumferential total pressure distortion in the design working condition is the largest.