In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical ...In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and various adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fitness values, which are the inverse of square differences of angular speeds. From numerical simulations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can effectively solve the problems with slow convergent speed and premature phenomenon, and is more accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in identifying parameters of motors, the best ARGA method is obtained and could be applied to any other mechatronic systems.展开更多
针对采用抽头式单相电机的风机控制过程中存在的排风效率低、转矩脉动大等问题,文中采用直流无刷电机代替传统单相电机驱动叶轮,并结合空间向量脉宽调制算法与无感转子位置检测,采用磁场定向控制算法精准控制风机转矩,设计了一种基于磁...针对采用抽头式单相电机的风机控制过程中存在的排风效率低、转矩脉动大等问题,文中采用直流无刷电机代替传统单相电机驱动叶轮,并结合空间向量脉宽调制算法与无感转子位置检测,采用磁场定向控制算法精准控制风机转矩,设计了一种基于磁场定向控制的风机转矩电控系统。系统采用微控制单元(Microcontroller Unit,MCU)+智能功率模块(Intelligent Power Module,IPM)的硬件驱动方案,软件顶层通过基于FreeRTOS的状态机进行控制,通过风机电控系统实验平台,完成了负载波动时的试验对比分析。实验结果表明,该系统能够实现对风机转矩的精准控制,输出转矩波动小,且磁场定向控制算法对负载扰动及参数误差具有很强的鲁棒性,使得系统在不同的风道环境下仍可准确输出固定转矩,保证了输出风量,效率较传统风机提高10%以上。展开更多
文摘In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and various adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fitness values, which are the inverse of square differences of angular speeds. From numerical simulations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can effectively solve the problems with slow convergent speed and premature phenomenon, and is more accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in identifying parameters of motors, the best ARGA method is obtained and could be applied to any other mechatronic systems.
文摘针对采用抽头式单相电机的风机控制过程中存在的排风效率低、转矩脉动大等问题,文中采用直流无刷电机代替传统单相电机驱动叶轮,并结合空间向量脉宽调制算法与无感转子位置检测,采用磁场定向控制算法精准控制风机转矩,设计了一种基于磁场定向控制的风机转矩电控系统。系统采用微控制单元(Microcontroller Unit,MCU)+智能功率模块(Intelligent Power Module,IPM)的硬件驱动方案,软件顶层通过基于FreeRTOS的状态机进行控制,通过风机电控系统实验平台,完成了负载波动时的试验对比分析。实验结果表明,该系统能够实现对风机转矩的精准控制,输出转矩波动小,且磁场定向控制算法对负载扰动及参数误差具有很强的鲁棒性,使得系统在不同的风道环境下仍可准确输出固定转矩,保证了输出风量,效率较传统风机提高10%以上。