A microscale air pollutant dispersion model system is developed for emergency response purposes. The model includes a diagnostic wind field model to simulate the wind field and a random-walk air pollutant dispersion m...A microscale air pollutant dispersion model system is developed for emergency response purposes. The model includes a diagnostic wind field model to simulate the wind field and a random-walk air pollutant dispersion model to simulate the pollutant concentration through consideration of the influence of urban buildings. Numerical experiments are designed to evaluate the model's performance, using CEDVAL (Compilation of Experimental Data for Validation of Microscale Disper- sion Models) wind tunnel experiment data, including wind fields and air pollutant dispersion around a single building. The results show that the wind model can reproduce the vortexes triggered by urban buildings and the dispersion model simulates the pollutant concentration around buildings well. Typically, the simulation errors come from the determination of the key zones around a building or building cluster. This model has the potential for multiple applications; for example, the prediction of air pollutant dispersion and the evaluation of environmental impacts in emergency situations; urban planning scenarios; and the assessment of microscale air quality in urban areas.展开更多
In this study numerical simulations and water tank experiments were used to investigate the flow and pollutant dispersion in an urban street canyon. Two types of canyon geometry were tested. The studies indicate that ...In this study numerical simulations and water tank experiments were used to investigate the flow and pollutant dispersion in an urban street canyon. Two types of canyon geometry were tested. The studies indicate that in a step-up notch canyon (higher buildings on the downstream side of the canyon), the height and shape of the upstream lower buildings plays an important role in flow pattern and pollutant dispersion, while in a step-down notch canyon (lower buildings on the downstream side), the downstream lower buildings have little influence. The studies also show that the substitution of tall towers for parailelepiped buildings on one side of the canyon may enhance the street ventilation and decrease the pollutant concentration emitted by motor vehicles.展开更多
The concentration distribution of urban air pollutants is closely related to people’s health.As an important utilization form of urban wind power,rooftop wind turbines have been widely used in cities.The wake effect ...The concentration distribution of urban air pollutants is closely related to people’s health.As an important utilization form of urban wind power,rooftop wind turbines have been widely used in cities.The wake effect of the rooftop wind turbines will change the flow behind buildings and then affect the pollutant dispersion.To this end,the pollutant dispersion behind the building is studied via the computational fluid dynamics method.The actuator disk model and idealized cube are adopted to model the wind turbine and the building,respectively.The study shows that the rooftop wind turbine can reduce the pollutant mass fraction near the ground and the pedestrian level.Due to the wake effect of the rooftop wind turbine,the turbulent fluctuation behind the building is weakened,and the spanwise pollutant dispersion is suppressed.Besides,the rooftop wind turbine weakens the downwash movement of the building,which enhances the vertical pollutant dispersion.展开更多
A finite element method for analysis of pollutant dispersion in shallow water is presented. The analysis is divided into two parts : ( 1 ) computation of the velocity flow field and water surface elevation, and (2...A finite element method for analysis of pollutant dispersion in shallow water is presented. The analysis is divided into two parts : ( 1 ) computation of the velocity flow field and water surface elevation, and (2) computation of the pollutant concentration field from the dispersion model. The method was combined with an adaptive meshing technique to increase the solution accuracy, as well as to reduce the computational time and computer memory. The finite element formulation and the computer programs were validated by several examples that have known solutions. In addition, the capability of the combined method was demonstrated by analyzing pollutant dispersion in Chao Phraya River near the gulf of Thailand.展开更多
This work simulates the dispersion and atmospheric attenuation of pollutants from the Dibamba-Douala thermal power plant. The objective of this research is to study the dispersion of air pollutants and mitigate the im...This work simulates the dispersion and atmospheric attenuation of pollutants from the Dibamba-Douala thermal power plant. The objective of this research is to study the dispersion of air pollutants and mitigate the impact of pollutants on the populations living around the power plant. The methodology used is as follows: the Gaussian model is used for the representation of the dispersion in the form of a plume, the finite difference method for digital resolution. Finally, dispersion charts are constructed which allow the heights of the chimneys to be fixed for which the concentrations of pollutants discharged comply with ambient air quality standards. The results obtained using the simulation made in the MATLAB software version 2016 show that, for a wind regime of 1.5 m/s;we have a predicted distance of 150 m at which the concentration is canceled out. Then, for the wind speed of 2 m/s;we had a predicted distance of 125 m and finally for a wind speed of 2.5 m/s;we observed the 120 m distance at which the concentration is canceled. In addition, for the same wind regimes, the attenuation of pollutants at ground level is obtained for a height of 60 m.展开更多
The impact of noise barriers on gaseous air-pollution dispersion was examined using the high-resolution CLMM (Charles University LES (Large Eddy Simulation) Microscale Model). The dispersion of a mixture of nitrogen o...The impact of noise barriers on gaseous air-pollution dispersion was examined using the high-resolution CLMM (Charles University LES (Large Eddy Simulation) Microscale Model). The dispersion of a mixture of nitrogen oxides (denoted as NOx—a mix of NO and NO2) was computed, providing the simulation in which wind direction is approximately perpendicular to the noise barriers. The barriers were assumed to be straight and infinitely long, with a height of 3 m. Dispersion of NOx was modeled for situations with no noise barriers along the highway, barriers on both sides, and for a single barrier on the upwind and downwind sides of the highway. The modelling results are presented and discussed in relation to previous studies and the implications of the results are considered for pollution barriers along highways.展开更多
In this paper, some experimental studies on the impact of effluent from an exhaust tower of an underground tunnel with special construction are reported. By measuring the flow field downstream of the tower in NJU mete...In this paper, some experimental studies on the impact of effluent from an exhaust tower of an underground tunnel with special construction are reported. By measuring the flow field downstream of the tower in NJU meteorological wind tunnel, some flow characteristics in the make area were established. Based on these, an advanced random\|walk dispersion model was set up and applied successfully to the simulation of dispersion in the wake area. The modelling results were in accordance with wind tunnel measurements. The computed maximum of ground surface concentration in the building case was a factor of 3-4 higher than that in the flat case and appeared much closer to the source. The simulation indicated that random walk modelling is an effective and practical tool for the wake stream impact assessment.展开更多
Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs), including xyle...Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs), including xylene, ethylbenzene, and toluene. This project was conducted in order to provide information for updating the Texas Commission on Environmental Quality (TCEQ), USA, permit by rule for Surface Coating Facilities. Project objectives were: 1) To develop a database of information regarding surface coating facilities in Texas;2) To estimate maximum emission rates for various VOC species from surface coating facilities in Texas;3) To conduct dispersion modeling to estimate off-site impacts from surface coating facilities. The database was developed using 286 TCEQ permit files authorizing surface coating facilities in Texas during 2006 and 2007. The database was designed to include information important for estimating emission rates, and for using as inputs to the dispersion model. Hourly and annual emissions of volatile organic compounds (VOCs), particulate matter (PM), and exempt solvents (ES) were calculated for each permitted entity/ company in the database, according to equations given by TCEQ. Dispersion modeling was then conducted for 3 facility configurations (worst-case stack height, good practice stack height, and fugitive emissions), for urban and rural dispersion parameters, for 8-hour and 24-hour operating scenarios, and for 1-hour, 24-hour, and annual averaging times, for a total of 36 scenarios. The highest modeled concentrations were for the worst-case stack height, rural dispersion parameters, 24-hour operation scenario, and 1-hour averaging time. 108 specific chemical species, which are components of surface coatings, were identified as candidates for further health impacts review.展开更多
This study focuses on the transient analysis of nonlinear dispersion of a polymeric pollutant ejected by an external source into a laminar pipe flow of a Newtonian liquid under axi-symmetric conditions.The influence o...This study focuses on the transient analysis of nonlinear dispersion of a polymeric pollutant ejected by an external source into a laminar pipe flow of a Newtonian liquid under axi-symmetric conditions.The influence of density variation with pollutant concentration is approximated according to the Boussinesq approximation and the nonlinear governing equations of momentum,pollutant concentration are obtained together with and Oldroyd-B constitutive model for the polymer stress.The problem is solved numerically using a semi-implicit finite difference method.Solutions are presented in graphical form for various parameter values and given in terms of fluid velocity,pollutant concentration,polymer stress components,skin friction and wall mass transfer rate.The model can be a useful tool in understanding the dynamics of industrial pollution situations arising from improper discharge of hydrocarbon pollutants into,say,water bodies.The model can also be quite useful for available necessary early warning methods for detecting or predicting the scale of pollution and hence help mitigate related damage downstream by earlier instituting relevant decontamination measures.展开更多
A numerical physio-chemical model of the NO_(x)-O_(3) photochemical cycle in the near-wake region of an isolated residential/office building has been presented in this study.The investigation delves into the dispersio...A numerical physio-chemical model of the NO_(x)-O_(3) photochemical cycle in the near-wake region of an isolated residential/office building has been presented in this study.The investigation delves into the dispersion of reactive air pollutants through the lens of fluid phenomenology and its impact on chemical reactivity,formation,transport,deposition,and removal.Computational fluid dynamics(CFD)simulations were conducted for the ground-point-source(GES)and roof-pointsource(RES)scenarios.Results show that the Damköhler number(Da),which quantifies pollutants’physio-chemical timescales,displays a strong inverse proportionality with the magnitude and spread of NO–increasing Da reduces human exposure to the toxic NO and NO_(2) substantially.When different wind directions were considered,the dispersion range of NO exhibited varying shrinking directions as Da increased.Furthermore,as Da increases,the concentration ratio KNO_(2)/KNO_(x),which quantifies the production of NO_(2) resulting from NO depletion,forms sharp high-low gradients near emission sources.For GES,the dispersion pattern is governed by the fluid’s phenomenological features.For RES,the intoxicated area emanates from the building’s leading-edge,with the lack of shielding inhibiting pollutant interactions in the near-wake,resulting in scant physio-chemical coupling.The NO_(2)/NO_(x) distribution follows a self-similar,stratified pattern,exhibiting consistent layering gradients and attributing to the natural deposition of the already-reacted pollutants rather than in-situ reactions.In the end,building design guidelines have been proposed to reduce pedestrian and resident exposure to NO_(x)-O_(3).展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41375014)the National Basic Research Program of China (Grant No. 2011CB 952002)Jiangsu Collaborative Innovation Center for Climate Change, China
文摘A microscale air pollutant dispersion model system is developed for emergency response purposes. The model includes a diagnostic wind field model to simulate the wind field and a random-walk air pollutant dispersion model to simulate the pollutant concentration through consideration of the influence of urban buildings. Numerical experiments are designed to evaluate the model's performance, using CEDVAL (Compilation of Experimental Data for Validation of Microscale Disper- sion Models) wind tunnel experiment data, including wind fields and air pollutant dispersion around a single building. The results show that the wind model can reproduce the vortexes triggered by urban buildings and the dispersion model simulates the pollutant concentration around buildings well. Typically, the simulation errors come from the determination of the key zones around a building or building cluster. This model has the potential for multiple applications; for example, the prediction of air pollutant dispersion and the evaluation of environmental impacts in emergency situations; urban planning scenarios; and the assessment of microscale air quality in urban areas.
基金This rearch was supported by the National Natural Science Foundation of China under Grant No.40575069.
文摘In this study numerical simulations and water tank experiments were used to investigate the flow and pollutant dispersion in an urban street canyon. Two types of canyon geometry were tested. The studies indicate that in a step-up notch canyon (higher buildings on the downstream side of the canyon), the height and shape of the upstream lower buildings plays an important role in flow pattern and pollutant dispersion, while in a step-down notch canyon (lower buildings on the downstream side), the downstream lower buildings have little influence. The studies also show that the substitution of tall towers for parailelepiped buildings on one side of the canyon may enhance the street ventilation and decrease the pollutant concentration emitted by motor vehicles.
基金supported by the National Natural Science Foun-dation of China(Nos.11772128 and 11772266)the State Key Laboratory for Alternative Electrical Power System with Renewable Energy Sources(No.LAPS202107).
文摘The concentration distribution of urban air pollutants is closely related to people’s health.As an important utilization form of urban wind power,rooftop wind turbines have been widely used in cities.The wake effect of the rooftop wind turbines will change the flow behind buildings and then affect the pollutant dispersion.To this end,the pollutant dispersion behind the building is studied via the computational fluid dynamics method.The actuator disk model and idealized cube are adopted to model the wind turbine and the building,respectively.The study shows that the rooftop wind turbine can reduce the pollutant mass fraction near the ground and the pedestrian level.Due to the wake effect of the rooftop wind turbine,the turbulent fluctuation behind the building is weakened,and the spanwise pollutant dispersion is suppressed.Besides,the rooftop wind turbine weakens the downwash movement of the building,which enhances the vertical pollutant dispersion.
文摘A finite element method for analysis of pollutant dispersion in shallow water is presented. The analysis is divided into two parts : ( 1 ) computation of the velocity flow field and water surface elevation, and (2) computation of the pollutant concentration field from the dispersion model. The method was combined with an adaptive meshing technique to increase the solution accuracy, as well as to reduce the computational time and computer memory. The finite element formulation and the computer programs were validated by several examples that have known solutions. In addition, the capability of the combined method was demonstrated by analyzing pollutant dispersion in Chao Phraya River near the gulf of Thailand.
文摘This work simulates the dispersion and atmospheric attenuation of pollutants from the Dibamba-Douala thermal power plant. The objective of this research is to study the dispersion of air pollutants and mitigate the impact of pollutants on the populations living around the power plant. The methodology used is as follows: the Gaussian model is used for the representation of the dispersion in the form of a plume, the finite difference method for digital resolution. Finally, dispersion charts are constructed which allow the heights of the chimneys to be fixed for which the concentrations of pollutants discharged comply with ambient air quality standards. The results obtained using the simulation made in the MATLAB software version 2016 show that, for a wind regime of 1.5 m/s;we have a predicted distance of 150 m at which the concentration is canceled out. Then, for the wind speed of 2 m/s;we had a predicted distance of 125 m and finally for a wind speed of 2.5 m/s;we observed the 120 m distance at which the concentration is canceled. In addition, for the same wind regimes, the attenuation of pollutants at ground level is obtained for a height of 60 m.
文摘The impact of noise barriers on gaseous air-pollution dispersion was examined using the high-resolution CLMM (Charles University LES (Large Eddy Simulation) Microscale Model). The dispersion of a mixture of nitrogen oxides (denoted as NOx—a mix of NO and NO2) was computed, providing the simulation in which wind direction is approximately perpendicular to the noise barriers. The barriers were assumed to be straight and infinitely long, with a height of 3 m. Dispersion of NOx was modeled for situations with no noise barriers along the highway, barriers on both sides, and for a single barrier on the upwind and downwind sides of the highway. The modelling results are presented and discussed in relation to previous studies and the implications of the results are considered for pollution barriers along highways.
文摘In this paper, some experimental studies on the impact of effluent from an exhaust tower of an underground tunnel with special construction are reported. By measuring the flow field downstream of the tower in NJU meteorological wind tunnel, some flow characteristics in the make area were established. Based on these, an advanced random\|walk dispersion model was set up and applied successfully to the simulation of dispersion in the wake area. The modelling results were in accordance with wind tunnel measurements. The computed maximum of ground surface concentration in the building case was a factor of 3-4 higher than that in the flat case and appeared much closer to the source. The simulation indicated that random walk modelling is an effective and practical tool for the wake stream impact assessment.
文摘Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs), including xylene, ethylbenzene, and toluene. This project was conducted in order to provide information for updating the Texas Commission on Environmental Quality (TCEQ), USA, permit by rule for Surface Coating Facilities. Project objectives were: 1) To develop a database of information regarding surface coating facilities in Texas;2) To estimate maximum emission rates for various VOC species from surface coating facilities in Texas;3) To conduct dispersion modeling to estimate off-site impacts from surface coating facilities. The database was developed using 286 TCEQ permit files authorizing surface coating facilities in Texas during 2006 and 2007. The database was designed to include information important for estimating emission rates, and for using as inputs to the dispersion model. Hourly and annual emissions of volatile organic compounds (VOCs), particulate matter (PM), and exempt solvents (ES) were calculated for each permitted entity/ company in the database, according to equations given by TCEQ. Dispersion modeling was then conducted for 3 facility configurations (worst-case stack height, good practice stack height, and fugitive emissions), for urban and rural dispersion parameters, for 8-hour and 24-hour operating scenarios, and for 1-hour, 24-hour, and annual averaging times, for a total of 36 scenarios. The highest modeled concentrations were for the worst-case stack height, rural dispersion parameters, 24-hour operation scenario, and 1-hour averaging time. 108 specific chemical species, which are components of surface coatings, were identified as candidates for further health impacts review.
文摘This study focuses on the transient analysis of nonlinear dispersion of a polymeric pollutant ejected by an external source into a laminar pipe flow of a Newtonian liquid under axi-symmetric conditions.The influence of density variation with pollutant concentration is approximated according to the Boussinesq approximation and the nonlinear governing equations of momentum,pollutant concentration are obtained together with and Oldroyd-B constitutive model for the polymer stress.The problem is solved numerically using a semi-implicit finite difference method.Solutions are presented in graphical form for various parameter values and given in terms of fluid velocity,pollutant concentration,polymer stress components,skin friction and wall mass transfer rate.The model can be a useful tool in understanding the dynamics of industrial pollution situations arising from improper discharge of hydrocarbon pollutants into,say,water bodies.The model can also be quite useful for available necessary early warning methods for detecting or predicting the scale of pollution and hence help mitigate related damage downstream by earlier instituting relevant decontamination measures.
基金The work described in this paper was supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.C7064-18G)Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.16207118 and No.16211821)+2 种基金This work is also partly supported by the Natural Science Foundation of Chongqing,China(Project No.cstc2019jcyj-msxmX0565 and No.cstc2020jcyj-msxmX0921)the Key Project of Technological Innovation and Application Development in Chongqing(Project No.cstc2019jscxgksbX0017)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Project No.311020001).
文摘A numerical physio-chemical model of the NO_(x)-O_(3) photochemical cycle in the near-wake region of an isolated residential/office building has been presented in this study.The investigation delves into the dispersion of reactive air pollutants through the lens of fluid phenomenology and its impact on chemical reactivity,formation,transport,deposition,and removal.Computational fluid dynamics(CFD)simulations were conducted for the ground-point-source(GES)and roof-pointsource(RES)scenarios.Results show that the Damköhler number(Da),which quantifies pollutants’physio-chemical timescales,displays a strong inverse proportionality with the magnitude and spread of NO–increasing Da reduces human exposure to the toxic NO and NO_(2) substantially.When different wind directions were considered,the dispersion range of NO exhibited varying shrinking directions as Da increased.Furthermore,as Da increases,the concentration ratio KNO_(2)/KNO_(x),which quantifies the production of NO_(2) resulting from NO depletion,forms sharp high-low gradients near emission sources.For GES,the dispersion pattern is governed by the fluid’s phenomenological features.For RES,the intoxicated area emanates from the building’s leading-edge,with the lack of shielding inhibiting pollutant interactions in the near-wake,resulting in scant physio-chemical coupling.The NO_(2)/NO_(x) distribution follows a self-similar,stratified pattern,exhibiting consistent layering gradients and attributing to the natural deposition of the already-reacted pollutants rather than in-situ reactions.In the end,building design guidelines have been proposed to reduce pedestrian and resident exposure to NO_(x)-O_(3).